
                                       AD_________________ 
                                           
 
 
Award Number: W81XWH-07-1-0242 
 
 
 
TITLE: Infrared Spectroscopic Imaging for Prostate Pathology 
       Practice 
  
 
 
PRINCIPAL INVESTIGATOR: Rohit Bhargava, Ph.D. 
                                                 
                           
 
CONTRACTING ORGANIZATION:  University of Illinois 
                           Champaign, IL 61820 
 
 
REPORT DATE: March 2009
 
  
  
 
TYPE OF REPORT: Annual 
  
 
 
PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
               Fort Detrick, Maryland  21702-5012 
                 
 
DISTRIBUTION STATEMENT:  
 
       Approved for public release; distribution unlimited 
      
     
 
 
The views, opinions and/or findings contained in this report are 
those of the author(s) and should not be construed as an official 
Department of the Army position, policy or decision unless so 
designated by other documentation. 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
01-03-2009

2. REPORT TYPE
Annual  

3. DATES COVERED (From - To) 
 15 FEB 2008 - 14 FEB 2009 

4. TITLE AND SUBTITLE 
 
 

5a. CONTRACT NUMBER 
  *H 

 
Infrared Spectroscopic Imaging for Prostate Pathology 

.

5b. GRANT NUMBER 
W81XWH-07-1-0242 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

Rohit Bhargava, Ph.D. 
 

5e. TASK NUMBER 
 

 Email:rxb@uiuc.edu
 

5f. WORK UNIT NUMBER 
 
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

 
8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 
University of Illinois 
   
    
Champaign, IL 61820 

 
 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
   
US Army Medical Research and Materiel Command
504 Scott Street 

 
11. SPONSOR/MONITOR’S REPORT  

Fort Detrick, MD 21702-5012        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT The report summarizes progress towards using Fourier transform infrared 
spectroscopic imaging for prostate pathology in year 2 of a 3 year award from the PCRP. The 
aim of the work is to enable histopathologic recognition without the use of human input or 
stains. The major accomplishments in the past year are: 1) A genetic algorithm based  method 
to distinguish benign from malignant epithelium using infrared spectroscopic imaging data was 
shown to be effective. Large scale validation is underway. 2) A combination of IR and 
conventional pathology imaging has been developed. This is a critical step to potential 
clinical translation, and 3) A combination of IR imaging and conventional pathology shows 
promising results that can be explained in the context of existing practice. Larger validation 
studies are needed. 
 
 

15. SUBJECT TERMS 
Spectroscopy, prostate, histopathology, cancer, optimization, optical imaging 

16. SECURITY CLASSIFICATION OF: 
U 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
USAMRMC 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE
U 

UU  
57 

19b. TELEPHONE NUMBER (include area 
code) 
 
  Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18 



3 
 

 
 
 

Table of Contents 
 

 
                                                                                                                                Page 
 
 
Introduction…………………………………………………………….………..….. 4 
 
Body………………………………………………………………………………….. 4 
 
Key Research Accomplishments………………………………………….…….. 13 
 
Reportable Outcomes……………………………………………………………… 13 
 
Conclusion…………………………………………………………………………… 14 
 
References……………………………………………………………………………. 15 
 
Appendices…………………………………………………………………………… 16 



4 
 

Introduction 
Prostate cancer accounts for one-third of noncutaneous cancers diagnosed in US men,1 is a 
leading cause of cancer-related death and is, appropriately, the subject of heightened public 
awareness and widespread screening. If prostate-specific antigen (PSA)2 or digital rectal screens 
are abnormal,3 a biopsy is considered to detect or rule out cancer. Pathologic status of biopsied 
tissue forms the definitive diagnosis for prostate cancer and constitutes an important cornerstone 
of therapy and prognosis.4 There is, hence, a need to add useful information to diagnoses and to 
introduce new technologies that allow efficient analyses of cancer to focus limited healthcare 
resources. For the reasons underlined above, there is an urgent need for high-throughput, 
automated and objective pathology tools. Our general hypothesis is that these requirements are 
satisfied through innovative spectroscopic imaging approaches that are compatible with, and add 
substantially to, current pathology practice. Hence, the overall aim of this project is to 
demonstrate the utility of novel Fourier transform infrared (FTIR) spectroscopy-based, 
computer-aided diagnoses for prostate cancer and develop the required microscopy and software 
tools to enable its application.  
 
FTIR spectroscopic imaging is a new technique that combines the spatial specificity of optical 
microscopy and the biochemical content of spectroscopy.5 As opposed to thermal infrared 
imaging, FTIR imaging measures the absorption properties of tissue through a spectrum 
consisting of (typically) 1024 to 2048 wavelength elements per pixel.6 Since mid-IR (2-12 μm 
wavelength) spectra reflect the molecular composition of the tissue, image contrast arises from 
differences in endogenous chemical species. As opposed to visible microscopy of stained tissue 
that requires a human eye to detect changes, numerical computation is required to extract 
information from IR spectra of unstained tissue. Extracted information, based on a computer 
algorithm, is inherently objective and automated. Recent work has demonstrated that these 
determinations are also accurate and reproducible in large patient populations.7 Hence, we 
focused, in the first year of this project, on demonstrating that the laboratory results could be 
optimized using novel approaches to fast imaging. This is a critical step, since we propose next 
to analyze 375 radical prostatectomy samples. We have been able to optimize data acquisition 
parameters and develop a novel algorithm for processing data that enables almost 50-fold faster 
imaging. Briefly, the idea behind the process is illustrated in Figure 1. In this performance 
period, we sought to acquire more data (task 1), establish the use of IR imaging for validating 
cancer diagnosis (task 2), develop a calibration and prediction model for grading and perform 
extensive validation (task 2).  
 

 
Figure 1. (A) Conventional imaging in pathology requires dyes and a human to recognize 
cells. In chemical imaging data cubes (B), both a spectrum at any pixel (C) and the spatial 
distribution of any spectral feature can be seen. e.g. in (D) nucleic acids (left, at ~1080 cm-
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1), and collagen specific (right, at ~ 1245 cm-1 )  Computational tools can then convert 
chemical imaging data to knowledge used in pathology (E). 

 
Body 
Specific activities and tasks as per statement of work during this performance period are described below. 
Details of performance for the first year period are given in the past annual report which is attached for 
quick reference of the reviewers. : 
 
Task 1. Perform infrared spectroscopic imaging on prostate biopsy specimens 
Goal: Data will be acquired from samples identified in Task 2, sub-task a. 4 cm^(-1) spectral 
resolution data, imaging ~6 micrometer of sample per pixel will be acquired with a signal to 
noise ratio of greater than 1000:1. At least 375 samples will be imaged to provide as estimated 
40 million spectra. Data will continuously be available for analysis in this period. (Months 8-18) 
 
Activities: Over 5 million spectra have been acquired from approx. 475 samples using 4 cm-1 
resolution over the 7200-720 cm-1 range and 6.25 micron on a side per pixel.  Data handling and 
analysis is on-going. The data were acquired using a tissue microarray with no restrictions on age 
or prior PSA reading. The archiving and record keeping for such data sets became a challenge. 
Hence, we developed data handling tools to both maintain a database of properties as well as 
visualize the data in a microarray format. For example, one acquired data set is shown below in 
Figure 2. 
 

 
 
Figure 2. Approximately 475 viable samples for further analysis acquired by FT-IR 
imaging and classified as per optimized protocols developed previously in this project. 

A second set of 460 samples were also acquired for validation studies. This large scale data 
acquisition has never been previously reported and is a direct result of the optimizations 
accomplished in year 1 of this project. Corresponding to each sample in the tissue array above, 
we have developed a database to store information for the patient, including age, PSA values at 
the time of diagnosis, Gleason grade and stage on diagnosis as well as outcome.  
 
As per previous studies in year 1, we determined that there was a need to acquire data of a signal 
to noise ratio (SNR) of at least 1000:1 (or, 30 dB).  One outstanding question is how to predict 
the required SNR for any classification task. This is a major issue in which no useful guidance 



6 
 

was available in the literature. In observing the data from many samples, it became clear that 
new tools were needed to visualize diversity and usefulness of particular samples. In particular, 
one key element of the protocol depends on a quality check. If contaminations exist in samples 
or the sample does not belong to a population that is similar to the one that was used to construct 
a calibration of the data, then the sample will clearly lead to incorrect results. Such a sample 
must be flagged during quality control but there was no obvious means to do so. Hence, we 
developed a new visualization system for spectrum wide analysis of the data. 
 
First, we recall that not every point in the spectrum (Figure 1C) is actually useful in calibration 
or prediction. The data are reduced to a potential set of descriptors, termed metrics, which are 
peak height ratios, areas, positions or even spatial indices. Only a few of these metrics are useful 
in calibration, and consequently, in predicting histopathology. Hence, we employ the 
visualization only for a set of metrics. A view of the developed software and typical plot 
resulting from the analysis is shown in Figure 3.  

 

Figure 3. A Representation of metric-patient data to determine quality and consistency in 
large scale data analysis. Many representations are possible, including the one shown here. 
Here, the value of (µ1-µ2)/σ for each metric is represented, where µ1 is the mean of 
epithelium pixels for one patient for a particular metric and µ2 is the mean of stroma pixels 
for one patient for a particular metric whereas σ is the standard deviation of the entire 
metric. Hence, (µ1-µ2)/σ  is a measure of classification potential in separating epithelium 
from stroma. Patient no. 34 can be seen to have outlier values that must be investigated in 
detail so as not to become a confounding variable. 

 
Task 2. Analyze spectroscopic imaging data for biochemical markers of tumor and develop 
numerical algorithms for grading cancer 
Goal: Develop algorithm for malignancy recognition. Models will be constructed and optimized 
using Genetic Algorithms operating on identified metrics. Models will be tested and validated 
using ROC curves with pathologist marking as the ground truth. A protocol for segmenting 
benign from atypical condition will be available.  (Months 11-18) Three specific aims from the 
statement of work (SOW) are: 

a. Develop protocols and validate distinction between benign-appearing and atypical 
tissue (Months 12-18) 

b. Develop calibration for predicting cancer grade (Months 18-22) 
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c. Develop protocols and validate Gleason grading of tumor (Months 18-27) 
 
 
Activities: We determined metrics that were indicative of non-benign conditions using a subset of data. 
An example of the developed protocol applied to the training data is shown in  
 

Figure 4. A study was undertaken with 80 samples that were malignant and 80 that were 
benign. Some patients did not have diagnostic material and there was unrecoverable 
damage to other tissues yielding 140 out of 160 total specimens for classification. First, we 
performed histologic evaluation to determine the location of epithelial cells (figure labeled – 
Array Histology), which are coded in green color and stromal cells are coded in red. 
Stromal cells were computationally suppressed and only epithelial cells were further 
considered. In the prediction (Pathology Result), we were able to obtain the following 
accuracies : Overall pixel accuracy ~ 88.5% ,  1 cancer sample classified as benign (out of 
71 total cancer cases), 1 benign sample was classified as cancerous ( out of a total of 69 
samples classified as benign). The gold standard was a pathologist diagnosis of the samples 
(Pathology Design). Results show that one can potentially obtain Sensitivity and specificity 
exceeding human capabilities but larger validation studies are underway with other 
samples and confounding effects of optics need to be resolved. 

 
Though the continued development of fast FTIR microspectroscopyError! Bookmark not 
defined. in many laboratories worldwide represents an exciting opportunity for pathology, there 
is little evidence yet that the technology can add more value to the clinical enterprise than 
conventional pathologic examinations in prostate cancer. Hence, researchers must demonstrate 
both the predictive value of the technology as well as its improvement over current practice. 
Another intriguing question is how the new technology and existing practice can be integrated to 
best address needs in urology. In this manuscript, we examine one approach in which the 
integration of IR and H&E based information can lead to useful results. In particular, we focued 
on extracting morphologic measures of tissue by prior segmentation using FT-IR imaging. The 
extracted parameters are organized into a predictive model and evaluated for efficacy in 
detecting disease. The work is a first step towards integrating IR and conventional imaging for 
optimal use in pathology. 
 
IR and H&E stained images were acquired from adjacent tissue samples. Although the two 
samples are similar, IR and stained images have different sizes, contrast mechanisms and data 
values. Hence, features to spatially register the images are not obvious. One option is to binarize 
information, but the differences in contrast mechanism may make it difficult. The second major 
challenge is the difference in resolution. While matching resolution is relatively straightforward, 
the contrast in higher resolution images makes matching details at lower resolutions difficult.  

Array – 80 Patients Array – Histology Pathology Design Pathology Result
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Outer shape and empty space inside the samples (lumens) are only obvious features. To overlay 
the two images, we first convert IR and stained images into binary images. Then, we scale up the 
IR image (target image) using a cubic interpolation to the spatial size of the H&E stained image 
(reference image). One can scale down the H&E image as well but our goal here is to use the 
detailed morphological information contained in the H&E stained image. In this case, most 
samples are elliptical or circular; thus, scale factors are determined by estimating major and 
minor axis of the samples. After scaling up the target image, we search for the (locally) optimal 
match by shifting, rotating, and scaling the target image based on a greedy algorithm. An 
example of the matching result is shown in Figure 5 
 

Figure 5. A synergistic blending of IR and conventional pathology (H&E) images can lead 
to automated extraction of spatial features that can be used for classification of tissue into 
benign and malignant cores. As opposed to previous efforts (e.g. figure 4), these set of data 
use the IR images as a guide in morphologic analyses. 

 
A number of factors have been identified as being transformed in cancerous tissue that could 
potentially be used for automated analyses. One such class of factors are cellular and nuclear 
morphology. Properties of nuclei and lumens in normal and cancerous tissues are different but 
the detection and cataloging of the same is not widely practiced due to a few critical reasons. 
First, patient-to-patient variance and small differences in multiple clinical settings make 
consistent analysis of images difficult. Second, detection of epithelial nuclei may be stymied by a 
stromal response that is not uniform for all grades and types of cancers. We focused first on 
developing the methodology to obtain consistent results in the context of these challenges. We 
addressed two measurements: nuclear and lumen structure. The specific properties studied 
include the size and number of nuclei and lumens, distance from nuclei to lumens or between 
nuclei and lumens, and geometry of the lumens. In order to use these properties, the first step is 
to detect nuclei and lumens correctly from the stained images.  
 
Lumens are elliptical, empty white spaces surrounded by epithelial cells. In normal tissues, 
lumens are larger in diameter and can have a variety of shapes. In cancerous tissues, lumens are 
progressively smaller with increasing grade and generally have less distorted shapes. Our 
strategy to detect lumens is to find white areas (from H&E images) whose shapes are elliptical 
while being located  next to or within the areas where epithelial cells exist (from IR imaging 
data). White spots inside the samples can be found by using a proper threshold value (R, G, B > 
200) but and these may include many artifacts. In our observations, artifactual lumens are 
relatively small and/or their shapes may be arbitrary. Hence, a simple strategy was invoked to 
reduce false detection. We required the size of lumens to be larger than 10 pixels and the major 
and minor axis ratio (rmajor/minor) to be less than 3 if the size of lumens was smaller than 100 
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pixels. A second challenge arises from the limited amount of samples in our data set resulting in 
incomplete lumens for some samples. While the structures can manually be recognized to be 
lumens, they do not form a complete geometrical shape for easy identification. To identify these 
partial lumens, we first model the entire tissue core as an ellipse. The areas within the ellipse that 
may correspond to lumens are then restricted by two further considerations: an incomplete lumen  
has to have the ratio of its major to minor axis, rmajor/minor < 3 and size of the lumen  > 100 pixels. 
While these objective criteria were determined from observations of tissue structures on the 
array, other rules may be sought.  
 
Nucleus detection by automated analysis is more difficult than lumen detection due to variability 
in staining and experimental conditions under which images were acquired. Nuclei are relatively 
dark and can be modeled as small elliptical areas in the stained images. The geometrical model is 
often confounded as multiple nuclei can be so close as to appear like one big, arbitrary-shaped 
nucleus. This observation illustrates both the challenge of segmenting nuclei as well as the need 
for high resolution imaging. Generalized detection of stained structures can prove difficult. For 
example, small folds or edge staining around lumens can make the darker shaded regions 
difficult to analyze. Here, we use the segmentation provided by the classified IR image to frame 
the problem. Epithelial pixels can be isolated on the H&E images using the IR overlay to provide 
two types of pixels: pink and blue staining, which arise from the nuclear and cytoplasmic 
component respectively. For nuclei restricted to epithelial cells in this manner, a set of general 
observations may be noted: 1) Red, Green, and Blue channel intensities are higher in nuclear 
pixels and lower in cytoplasmic pixels. 2) Green channel intensity is lower than other channels in 
both cytoplasmic and nuclear pixels. 3) In stromal cells, which are not considered here, Red 
channel intensity is usually higher than other channels, reflecting the pink stain. 4) A difference 
between Red and Blue channel intensities is small both in cytoplasmic and nuclear pixels. Based 
these observations, we found that converting the stained image to a new color system RG–B 
(|Red + Green – Blue|) could well characterize the areas where nuclei are present upon 
thresholding. After the color system conversion, we apply a morphological closing operator to 
the image to fill small holes and gaps within nuclei. The final segmentation of each individual 
nucleus is accomplished by using watershed algorithm. The entire segmentation process is 
shown  
Figure 6.  
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Figure 6. Step-by-step protocol for detection of nuclei. The final result of the process is a 
robust recognition of nuclei and correction of images for consistent morphologic analysis.  
 
 
Since the raw color intensity of the stained images is variable, simple thresholds could fail to 
correctly segment the regions we want. To compensate for potential confusion, we adaptively 
determine the two threshold values. Pixels (P) where Red channel intensity is less than either of 
other two channels are only collected. Since we can segment epithelial cells from the IR data, 
pixels are assumed to be either cytoplasmic or nuclear. The threshold values become the 

average P STD P( ) ( )−
2
3

for both Red(ThRed) and Green(ThGreen) channel. It was found that the 

red channel intensity neither changes as much as Green channel intensity, nor is it critical to 
identify nuclei. The green channel intensity is skewed in cancerous tissues, however, that may 
increase a false discovery of nuclei in cancerous cells. To make the segmentation consistent and 
robust, and obtain better contrast for Green channel, adaptive histogram equalization was 
performed. 
 
Following the image processing steps, we sought to use this consistent data for prediction. We 
developed a generative model to describe different characteristics of epithelial cells and lumens. 
In our model, the generative process for a tissue is 1) Create a tissue of a certain size, 2) Given a 
tissue size, choose areas covered by epithelial cells in a tissue, and select the number of lumens 
and the distance between them, 3) For each lumen, select its size, major/minor axis, and number 
of nuclei around it and distort it, 4) For nuclei around a lumen, select their sizes, distances to the 
lumen, and angle difference to the next nucleus, and place them. As generating lumens, we 
separate partial lumens from complete lumens since they could affect prior knowledge of the 
complete lumens. We assume that each lumen is independent each other and the formation of 
lumens is equally-likely. Thus, the probability of generating a given tissue characteristic based 
on a model θ is defined as: 
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 ( 1) 

 
 
 
 
 
 
 
where SS, SE, SL, SiL, SN are sizes of sample, epithelial cells, lumens and incomplete lumens, 
respectively; NL, NiL, NNN, NiNN  are the number of complete and incomplete lumens, nuclei 
around a lumen, nuclei around an incomplete lumen, respectively; LMaj, LMin LiMaj, LiMinare 
lengths of major and minor axis of lumen and incomplete lumen, respectively. In addition to 
these geometric parameters, we also developed distortion parameters. DL, DiL are a distortion of 
lumen and incomplete lumen, and DN is a distance from nuclear centers to lumen. A distortion of 
a lumen is defined as the distance from an ideal ellipse to the lumen on a straight line from the 
ideal ellipse to the center of the lumen. The ideal ellipse can be drawn by finding the 
major/minor axis and the center of the lumen. For the probability of a Lumen distortion, we 
employ a Markov chain assumption, namely, the distance from the ideal ellipse to the lumen at a 
certain point on the ideal ellipse is only dependent on the distance from the previous point to the 
lumen. A distance from a nucleus to lumen is defined in the same manner as lumen distortion. 
 
We first proposed to use the generative model to classify the tissues samples. This is usually 
accomplished by computing the log-likelihood of tissues based on different classes, computing 
the difference between predictions based on a training set and using it as a decision function. For 
example, to classify a tissue into normal or cancer classes, we would first compute log-likelihood 
of the tissue based on both normal and cancerous samples. The difference between two log-
likelihoods would give us the class to which the tissue belongs. From our study, however, we 
observed that just a couple of features in the log-likelihood function were determining 
dominantly the magnitude of the function. Regardless of the discriminating ability, selected few 
features dominate the decision function since likelihood is the product of probabilities. Hence, 
the simple measurement of more than one term that is fundamentally based on the same 
transition makes a larger contribution to the decision function. Since the method does not test for 
independently prognostic terms, the selection of features biases the likelihood values in a manner 
that may not be optimal for segmentation.  
 
To resolve the issue, we employed a support vector machine (SVM) based algorithm for 
segmentation but based inputs to the SVM on the results from the generative model. The value of 
each feature is determined from the log-likelihood values obtained from the generative model as:  
 
 ( 2) 
 
 
The parameters for the generative model were learned from the entire dataset, and features 
values were calculated for SVM. The method was subsequently validated with 10-fold cross-
validation. Briefly, in the 10-fold validation, a selection algorithm randomly partitions the entire 
dataset into 10 distinct sets, chooses 9 sets to train SVM and uses the remaining set for testing. 
We repeated this selection 200 times and measured four quantities: an overall accuracy, False 
Positive Rate (FPR), 1 – True Positive Rate (1 – TPR), and AUC (area under the ROC curve). 
The overall accuracy is the number of correctly classified samples over all test samples. FPR is 

1(Lumen size )
(Lumen size | )1 exp log
(Lumen size | )
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the number of negative samples classified as positive over all negative samples. 1 – TPR is the 
number of positive samples classified as negative over all positive samples. We summed all false 
negative and positive predictions for each 10-fold cross-validation and computed the ratios. The 
four quantities shown in following tables are the average of the ratios over 500 replicates. 
For calculation of “test-positive” cases, cancer samples are positive samples and normal samples 
are negative samples. The overall accuracy is 9.27%. FPR and 1 – TPR at threshold value 0 are 
8.0% and 6.8%, respectively. 1 – TPR is number of cancer samples classified as normal over all 
cancer samples. Accordingly, achieving lower 1 – TPR is more significant than lower FPR.  In 
ROC curve, AUC is 0.99. All measurement are listed in Table 1 and 2. 
 
 

 Average Median Standard Deviation Minimum Maximum
Accuracy (%) 92.7 92.7 1.1 90.5 95.5 
AUC 0.985 0.996 0.025 0.838 1.00 
Table 1. The overall accuracy and AUC of cancer and normal classification. 
 
 

Threshold Type Average Median Standard 
Deviation Minimum Maximum

None FPR (%) 8.0 7.9 1.8 3.3 13.2 
[1-TPR] (%) 6.8 7.0 1.4 3.9 11.3 

Table 2. FPR and 1–TPR for cancer and normal classification 
 
 
Quite interestingly, when the entire data set was used for training the classifier, an accuracy of 
100% was obtained. While the observation underscores the need to be cautious in validation, it 
also suggests that better classification than what we have achieved may be possible with more 
training or better feature extraction.  
 

In summary, of the three sub-aims in task 2, the first has been accomplished to a reasonable degree and 

progress on the other two is on-going (the sub-aims overlap years 2 and 3 of the project).
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Key Research Accomplishments 

• A genetic algorithm based  method to distinguish benign from malignant epithelium using 
infrared spectroscopic imaging data was shown to be effective. Large scale validation is 
underway. 

• A combination of IR and conventional pathology imaging has been developed. This is a 
critical step to potential clinical translation 

• A combination of IR imaging and conventional pathology shows promising results that can be 
explained in the context of existing practice. Larger validation studies are needed.  
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Conclusion……………………………………………………………………………  
The work accomplished demonstrates clear potential and preliminary protocols for classifying prostate 
tissue. If the protocols are validated in on-going larger studies, a new tool for prostate histopathology will 
be available. 
 

So What Section 
If the reported progress is sustained, an automated method for prostate pathology will be available that 

can rapidly determine the presence of cancer in biopsies and aid pathologists in making accurate 

decisions. 
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Abstract Prostate cancer accounts for one third of noncutaneous cancers diagnosed in US

men and is a leading cause of cancer related death. Advances in Fourier transform infrared

spectroscopic imaging now provide very large data sets describing both the structural and

local chemical properties of cells within prostate tissue. Uniting spectroscopic imaging data

and computer aided diagnoses (CADx), our long term goal is to provide a new approach to

pathology by automating the recognition of cancer in complex tissue. The first step toward the

creation of such CADx tools requires mechanisms for automatically learning to classify tissue

types a key step on the diagnosis process. Here we demonstrate that genetics based machine

learning (GBML) can be used to approach such a problem. However, to efficiently analyze

this problem there is a need to develop efficient and scalable GBML implementations that are

able to process very large data sets. In this paper, we propose and validate an efficient GBML

technique NAX based on an incremental genetics based rule learner. NAX exploits mas

sive parallelisms via the message passing interface (MPI) and efficient rule matching using

hardware implemented operations. Results demonstrate that NAX is capable of performing

prostate tissue classification efficiently, making a compelling case for using GBML

implementations as efficient and powerful tools for biomedical image processing.
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1 Introduction

Pathologist opinion of structures in stained tissue is the definitive diagnosis for almost all

cancers and provides critical input for therapy. In particular, prostate cancer accounts for

one third of noncutaneous cancers diagnosed in US men. Hence, it is, appropriately, the

subject of heightened public awareness and widespread screening. If prostate specific

antigen (PSA) or digital rectal screens are abnormal, a biopsy is needed to definitively

detect or rule out cancer. Pathologic status of biopsied tissue not only forms the definitive

diagnosis but constitutes an important cornerstone of therapy and prognosis. There is,

however, a need to add useful information to diagnoses and to introduce new technologies

that allow economical cancer detection to focus limited healthcare resources. In pathology

practice, widespread screening results in a large workload of biopsied men, in turn, placing

a increasing demand on services. Operator fatigue is well documented and guidelines limit

the workload and rate of examination of samples by a single operator. Importantly, newly

detected cancers are increasingly moderate grade tumors in which pathologist opinion

variation complicates decision making.

For the reasons above, there is an urgent need for automated and objective pathology

tools. We have sought to address these requirements through novel Fourier transform

infrared (FTIR) spectroscopy based, computer aided diagnoses for prostate cancer and

develop the required microscopy and software tools to enable its application. FTIR

spectroscopic imaging is a new technique that combines the spatial specificity of optical

microscopy and the biochemical content of spectroscopy. As opposed to thermal infrared

imaging, FTIR imaging measures the absorption properties of tissue through a spectrum

consisting of (typically) 1024 2048 wavelength elements per pixel. Since IR spectra reflect

the molecular composition of the tissue, image contrast arises from differences in

endogenous chemical species. As opposed to visible microscopy of stained tissue that

requires a human eye to detect changes, numerical computation is required to extract

information from IR spectra of unstained tissue. Extracted information, based on a com

puter algorithm, is inherently objective and automated (Lattouf and Saad 2002; Fernandez

et al. 2005; Levin and Bhargava 2005; Bhargava et al. 2006).

Uniting spectroscopic imaging data and computer aided diagnoses (CADx), we seek to

provide a new approach to pathology by automating the recognition of cancer in complex

tissue. This is an exciting paradigm in which disease diagnoses are objective and repro

ducible; yet do not require any specialized reagents or human intervention. The first step

toward the creation of such CADx tools requires mechanisms for reliable and automated

tissue type classification. In this paper we demonstrate how genetics based machine

learning tools can achieve such a goal. Interpretability of the learned models and efficient

processing of very large data sets have lead us to rule based models easy to interpret

and genetics based machine learning inherent massively parallel methods with the

required scalability properties to address very large data sets. We present the method and

the efficiency enhancement techniques proposed to address automated tissues classifica

tion. When pushed beyond the relatively small problems traditionally used to test such

methods, an need for efficient and scalable implementations becomes a key research topic
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that needs to be addressed. We designed the proposed a technique with such constraints in

mind. A modified version of an incremental genetics based rule learner that exploits

massive parallelisms via the message passing interface (MPI) and efficient rule

matching using hardware oriented operations. We name this system NAX: NAX is compared

to traditional and genetics based machine learning techniques on an array of publicly

available data sets. We also report the initial results achieved using the proposed technique

when classifying prostate tissue.

The remainder of the paper is structured as follows. We present an overview of the

problem addressed in Sect. 2, paying special attention to tissue classification. We discuss in

Sect. 3 the hurdles that traditional genetics based machine learning implementations face

when applied to very large data sets. Section 4 presents our solution to those hurdles. We

also describe the incremental rule learner proposed for tissue classification. Last, we

summarize results on publicly available data sets and the preliminary results for tissue

classification on a prostate tissue microarray in Sect. 5. Finally, in Sect. 6, we present

conclusions and further work.

2 Biomedical imaging and data mining

This section presents an overview of the problem addressed in this paper. We first intro

duce infrared spectroscopic imaging as a potentially powerful tool for cancer diagnosis and

prognosis. Then, we explore the protocols that provide raw high quality data that for data

mining. Finally, we conclude by focusing on the key task, tissue classification, by focusing

on prostate tissue.

2.1 Infrared spectroscopy and imaging for cancer diagnosis and prognosis

Infrared spectroscopy is a well established molecular technique and is widely used in

chemical analyses. The fundamental principle governing the response of any material is

that the vibrational modes of molecules are resonant in energy with photons in the mid

infrared region (2 14 mm) of the electromagnetic spectrum. Hence, when photons of

energy that are resonant with the material’s molecular composition are incident, a number

are absorbed. The number absorbed is directly proportion to the number of chemical

species that are excited. Hence, any material has a characteristic frequency dependent

absorption profile called a spectrum. An infrared spectrum is often termed the ‘‘optical

fingerprint’’ of a material as it can help uniquely identify molecular composition see

Fig. 1.

Researchers, including us, have contributed to develop an imaging version of spec

troscopy that is essentially similar to an optical microscope. In this mode of spectroscopy,

images are acquired in the manner of optical microscopy with one important difference.

Instead of measuring the intensity of three colors for a visible image, several thousand

intensity values are acquired at each pixel in the image as a function of wavelength

(spectrum at each pixel). The resulting data set is three dimensional (2 spatial and 1

spectral indices) consisting typically of a size 256 · 256 · 1024, but extending to sizes

such as 3500 · 3500 · 2048. Since each data point is stored as a 16 bit number, the

data size typically runs into several tens to hundreds of gigabytes.
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2.2 Mining the spectra: Two sequential problems

Though the continued development of fast FTIR microspectroscopy represents an exciting

opportunity for pathology, handling the resultant data and rapidly providing classifications

remains a critical challenge. First, the sheer volume of data potentially larger than 10 GB

a day represents an organizational and retrieval challenge. Next, extraction of useful

information in short time periods requires the formulation of optimal protocols. Third, the

automated cancer segmentation problem is very complex and offers a number of routes and

levels of data that need to be analyzed to determine the optimal approach for application in

a laboratory.

The typical application is the need to extract information from the data set such that it is

clinically relevant. Hence, the output of the data mining algorithm to be developed is well

bounded and clearly defined. For example, in the prostate there are two levels of interest. In

the first level, the pathologist examines the tissue to determine if there are any epithelial

cells. Since more than 95% of prostate cancers arise in epithelial cells, transformations in

this class of cells forms the diagnostic basis and a primary determinant of therapy. Other

cell types of interest are lymphocytes that may indicate inflammation, blood vessel density

that may indicate the development of new blood supply indicative of cancer growth and

nerves that may be invaded by cancer cells. Hence, any automated approach to pathology

must first identify cell types accurately. The second step in pathology follows. Once

Fig. 1 Conventional staining and automated recognition by chemical imaging. (A) Typical H&E stained
sample, in which structures are deduced from experience by a human. Highlights of specific regions in the
manner of H&E is possible using FTIR imaging without stains. (B) Absorption at 1080 cm 1 commonly
attributed to nucleic acids and (C) to proteins of the stroma. The data obtained is 3 dimensional (D) from
which spectra (E) or images at specific spectral features may be plotted
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epithelial cells are located, their spatial patterns are indicative of disease states. In our

imaging approach, we can identify both spatial patterns as well as chemical patterns in

epithelial cells. Hence, the task would be to use either or both to classify disease. In this

paper, we focus only on the accurate identification/classification of tissue types as the first

step of the path that leads to obtaining the correct pixels of epithelium.

2.3 Tissue classification for prostate arrays

Prostate tissue is structurally complex, consisting primarily of glandular ducts lined by

epithelial cells and supported by heterogeneous stroma. This tissue also contains blood

vessels, blood, nerves, ganglion cells, lymphocytes and stones (which are comprised of

luminal secretions of cellular debris) that organize into structure measuring from tens to

hundreds of microns. These structures are readily observable within stained tissue using

bright field microscopy at low to medium magnifications. Hence, in applying FTIR

imaging (Levin and Bhargava 2005), we obtain the common structural detail employed

clinically and, additionally, spectral information indicative of tissue biochemistry. As

histologic classes contain identical chemical components, infrared vibrational spectra are

similar but reveal small differences in specific absorbance features. The technique pro

posed by Fernandez et al. (2005) examines each cell types’ spectra and transforms each

spectrum into a vector of describing features usually around the hundreds. A complete

description of this process is beyond the scope of this paper and can be found elsewhere

(Fernandez et al. 2005). Each pixel (cell present in the slice of micro array under analysis)

has an assigned spatial position in the array while the tissue type is assigned by a highly

experienced pathologist. Thus, the tissue classification can be cast into a supervised

classification problem (Mitchell 1997), where all the attributes are real valued and the class

is the tissue type ten classes: ephithelium, fibrous stroma, mixed stroma, muscle, stone,

lymphocytes, endothelium, nerve, ganglion, and blood. Figure 2 presents tissue types that

can be assigned by examining a stained image obtained, after the FTIR microsprectroscopy

on unstained tissue,by the pathologist. Each marked pixel in the image becomes a train

ing example; hence, the usual smallest data set is around hundreds of thousand records

per array.

3 Larger, bigger, and faster genetics-based machine learning

Bernadó et al. (2001) presented a first empirical comparison between genetics based

machine learning techniques (GBML) and traditional machine learning approached. The

authors reported that GBML techniques were as competent as traditional techniques. Later,

Bacardit and Butz (2006) repeated the analysis, obtaining similar results. Most of the

experiments presented on both papers used publicly available data sets provided by the

University of California at Irvine repository (Merz and Murphy 1998). Most of the data

sets are defined over tens of features and up to few thousands of records in the larger

cases. However, a key property of GBML approaches is its intrinsic massive parallelism

and scalability properties. Cantú Paz (2000) presented how efficient and accurate genetics

algorithms could be assembled, and Llorà (2002) presented how such algorithms can be

efficiently used for machine learning and data mining. However, there are elements that

need to be revisited when we want to efficiently apply GBML techniques to large data sets

such as the one described in the previous section.
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The GBML techniques require evaluating candidate solutions against the original data

set matching the candidate solutions (e.g., rules, decision trees, prototypes) against all

the instances in the data set. Regardless of the flavor used, Llorà and Sastry (2006)

showed that, as the problem grows, rule matching governs the execution time. For small

data sets (teens of attributes and few thousands of records) the matching process takes

more than 85% of the overall execution time marginalizing the contribution of the other

genetic operators. This number increases to 98% and above, when we move to data sets

with few hundreds of attributes and few hundred thousands of records. More than 98%

of the time is spent evaluating candidate solutions. Each evaluation can be computed in

parallel. Moreover, the evaluation process may also be parallelized on very large data

sets by splitting and distributing the data across the computational resources. A detailed

description of the parallelization alternatives of GBML techniques can be found else

where (Llorà 2002).

Currently available off the shelf GBML methods and software distributions (Barry

and Drugow itsch 1997; Llorà 2006) do not usually target large data sets. The two main

bottlenecks are large memory footprints and sequential processing oriented processes.

Generally speaking, they were designed to run on single processor machines with

enough memory to fit the entire data set. Hence, designers did not paying much

Fig. 2 The figure presents the tissue labeling provided by a pathologist biopsy section of human prostate
tissue. Each spot represents the section of a needle. Different colors represent different tissue types
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attention to the memory footprint required to store the data set usually completely

loaded into memory and the population of candidate solutions. These large complex

structures were geared to facilitate the programming effort, but they are not designed

toward the efficient evaluation of the candidate solutions. However, efforts have been

made to push GBML methods into domains which require processing large data sets.

Three different works need to be mentioned here. Flockhart (1995) proposed and

implemented GA MINER, one of the earliest effort to create data mining systems based

on GBML systems that scale across symmetric multi processors and massively parallel

multi processors. Flockhart (1995) reviewed different encoding and parallelization

schemes and conducted proper scalability studies. Llorà (2002) explored how fine

grained parallel genetic algorithms could become efficient models for data mining.

Theoretical analysis of performance and scalability were developed and validated with

proper simulations. Recently, Llorà and Sastry (2006) explored how current hardware

can efficiently speed up rule matching against large data sets. These three approaches

are the basis of the incremental rule learning proposed in the next section to approach

very large data sets.

Another important issue in real world problems is the class distribution. Usually

most real problems have a clear class imbalance. Recently, Orriols Puig and Bernadó

Mansilla (2006) have revisited this issue, showing how GBML techniques successfully

learn and maintain proper descriptions for those minority classes. If not designed

properly, descriptions of majority classes will tend to govern the learned models,

starving the description of minority classes. Prostate tissue classification is a clear

example of extreme class imbalance. Figure 3 presents the tissue type class distribution.

The smaller tissue type has 64 records, where as the larger classes have several tens of

thousands records. hence, the developed approaches must account for class size

variation.

Fig. 3 Figure shows the tissue class distribution. Once the classes are reordered according to their
frequency in the data set, we can easily appreciate the extreme imbalance the smaller tissue type has 64
records, where as the larger classes have several tens of thousands records
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4 The road to tractability

We describe in this section the steps we took to design a GBML method (NAX) able to deal

with very large data sets with class imbalance. NAX evolves, one at a time, maximally

general and maximally accurate rules. Then, the covered instance are removed and another

maximally general and maximally general rule is evolved and added to the previously

stored one forming a decision list. This process continues until no uncovered instances are

left this process is also referred as the sequential covering procedure (Cordón et al.

2001). Llorà et al. (2005) showed that maximally general and maximally accurate rules

(Wilson 1995) could also be evolved using Pittsburgh style Learning Classifier Systems.

Later, Llorà et al. (2007) showed that competent genetic algorithms (Goldberg 2002)

evolve such rules quickly, reliably, and accurately. The rest of this section describes (1)

efficient implementation techniques to deal with very large data sets, (2) the impact of class

imbalance, and (3) the NAX algorithm proposed.

4.1 Efficient implementations

As introduced earlier, when dealing with very large data sets, and regardless of the flavor

of the GBML technique used, we may spend up to 98% of the computational cycles trying

to match rules to the original data set (Llorà and Sastry 2006). Each solution evaluation is

independent of each other and, hence, it can be computed in parallel. Moreover, even the

matching nature of a rule the representation we will use from now on is highly parallel,

since conditions require performing simultaneous checks against different attributes per

record. Thus, efficient implementation can take advantage of parallelizing both elements.

4.1.1 Exploiting the hardware acceleration

Recently, multimedia and scientific applications have pushed CPU manufactures to include

support for vector instructions again in their processors. Both applications areas require

heavy calculations based on vector arithmetic. Simple vector operations such as add or

product are repeated over and over. During 1980s and 1990s supercomputers, such as Cray

machines, were able to issue hardware instructions that enabled basic vector arithmetics. A

more constrained scheme, however, has made its way into general purpose processors

thanks to the push of multimedia and scientific applications. Main chip manufactures

IBM, Intel, and AMD have introduced vector instruction sets Altivec, SSE3, and

3DNow+ that allow vector operations over packs of 128 bits by hardware. We will focus

on a subset of instructions that are able to deal with floating point vectors. This subset of

instructions manipulate groups of four floating point numbers. These instructions are the

basis of the fast rule matching mechanism proposed.

Our goal is to evolve a set of rules that correctly classifies the current data set rom

prostate tissue. Using a knowledge representation based on rules allows us to inspect the

learned model, gaining insight into the biological problem as well. All the attributes of the

domain are real value and the conditions of the rules need to be able to express conditions

in a <n spaces. We use a similar rule encoding to the one proposed by Wilson (2000b) a

variation of the original work proposed by Wilson (2000a) and later reviewed by Stone and

Bull (2003) and widely used in the GBML community. Rules express the conjunction of

tests across attributes. Each test may be defined in multiple flavors but, without loss of
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generality, we picked a simple interval based one. A simple example of an if then rule,

could be expressed as follows:

1:0� a0� 2:3 ^ � � � ^ 10:0� an� 23! c1 ð1Þ

Where the condition is the conjunction of the different attribute tests and the outcome is the

predicted class a tissue type. We also allow a special condition don0t care which

just always returns true , allowing condition generalization. The rule below illustrates an

example of a generalized rule.

1:0� a0� 2:3 ^ �3:0� a3� 2 �! c1 ð2Þ

All attributes except a0 and a3 were marked as don0t care:
Each condition can be encoded using 2 floating point numbers per condition, where ai

contains the lower bound of the condition and xi its upper bound. Thus, the condition ai £
a0 £ xi just requires to store the two floating point numbers. For efficiency reasons we

store them in two separate vectors, on containing the lower bounds and the other con

taining the upper bounds. The position in a vector indicates the attribute being tested. The

don0t care condition is simply encoded as ai [xi and, hence, we do not need to store any

extra information.

Matching a rule requires performing the individual condition tests before the final and
operation can be computed. Vector instruction sets improve the performance of this pro

cess by performing four operations at once. Actually, this process may be regarded as four

parallel running pipelines. The process can be further improved by stopping the matching

process when one test fails since that will turn the condition into false.

Figure 4 presents a C implementation the proposed hardware supported rule matching.

The code assumes that the two vectors containing the upper and lower bounds are provided

and records are stored in a two dimensional matrix. Figure 5 presents the vectorized

implementation of the code presented in Fig. 4 using SSE2 instructions. Exploiting the

hardware available can speed between 3 and 3.5 times the matching process, as also shown

elsewhere (Llorà and Sastry 2006).

4.1.2 Massive parallelism

Since most of the time is spent on the evaluation of candidate rules when dealing with large

data sets, our next goal was to find a parallelization model that could take advantage of this

peculiarity. Due the quasi embarrassing parallel (Grama et al. 2003) nature of the candi

date rule evaluation, we designed a coarse grain parallel model for distributing the

evaluation load. Cantú Paz (2000) proposed several schemes, showing the importance of

the trade off between computation time and time spent communicating. When designing

the parallel model, we focused on minimizing the communication cost. Usually, a feasible

solution could be a master/slave one the computation time is much larger than the

communication time. However, GBML approaches tend to use rather large populations,

forcing us to send rule sets to the evaluation slaves and collect the resulting fitness. These

schemes also increment the sequential sections that cannot be parallelized, threatening the

overall speedup of the parallel implementation as a result of Ambdhals law (Amdahl 1967).

To minimize such communication cost, each processor runs an identical NAX algorithm.

They are all seeded in the same manner, hence, performing the same genetic operations

and only differing in the portion of the population being evaluated. Thus, the population is
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treated as collection of chunks where each processor evaluates its own assigned chunk,

sharing the fitness of the individuals in its chunk with the rest of the processors. Fitness can

be encapsulated and broadcasted maximizing the occupation of the underlying packing

frames used by the network infrastructure. Moreover, this approach also removes the need

for sending the actual rules back and forth between processors as a master/slave approach

would require thus, minimizing the communication to the bare minimum the fitness.

Figure 6 presents a conceptual scheme of the parallel architecture of NAX:
To implement the model presented in Fig. 6, we used C and a message passing interface

(MPI) we used the OpenMPI implementation (Gabriel et al. 2004). Figure 7 shows the

code in charge of the parallel evaluation. Each processor computes which individuals are

assigned to it. Then it computes the fitness and, finally, it just broadcast the computed

fitness. The rest of the process is left untouched, and besides the cooperative evaluation, all

the processors end generating the same evolutionary trace.

4.2 Rule sets as individuals

One main characteristic of the so called Pittsburgh style learning classifier systems a

particular type of GBML is that individuals encode a rule set (Goldberg 1989; Llorà and

Garrell 2001; Goldberg 2002). Thus, evolutionary mechanisms directly recombine one rule

set against another one. For classification tasks of moderate complexity, the rule sets are

1. void match_seq_rule_set ( RuleSet * rs, InstanceSet is, int iDim, int iRows ) {
2. int i,j,k,iCnt,iClsIdx,iGround,iPred;
3. register int iMatcheable;
4. Instance ins;
5.
6. iClsIdx = rs->iCorrectedDim;
7. clean_fitness_rules_set(rs);
8. for ( i=0 ; i<iRows ; i++ ) {
9. ins = is[i];
10. iPred=-1;
11. for ( j=0 ; iPred==-1 && j<rs->iLen ; j++ ) {
12. iMatcheable = 1;
13. for ( iCnt=0,k=j*(rs->iCorrectedDim+VBSIF) ;
14. iMatcheable && k<j*(rs->iCorrectedDim+VBSIF)+rs->iDim ;
15. k++,iCnt++ ) {
16. iMatcheable = iMatcheable &&
17. !( (rs->pfLB[k]<=rs->pfUB[k]) &&
18. ( ins[iCnt]<rs->pfLB[k] || ins[iCnt]>rs->pfUB[k]));
19. }
20. if ( iMatcheable )
21. iPred = rs->pfLB[j*(rs->iCorrectedDim+VBSIF)+rs->iCorrectedDim];
22. }
23. iPred = (iPred==-1)?rs->iClasses:iPred;
24. iGround=(int)ins[iClsIdx];
25. rs->pConfMat[iGround][iPred]++;
26. }
27. }

Fig. 4 This figure presents a sequential implementation of the rule matched process in C . A rule set is
match against a data set. Lines 16, 17, and 18 implement the condition test for one attribute. The
implementation also computes the confusion matrix that contains the ground truth versus predicted class
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not large. However, for complex problems, the potential number of required rules to ensure

proper classification may need large amounts of memory that become prohibitive. The

requirements increase even further in the presence of noise (Llorà and Goldberg 2003).

1. #define VEC_MATCH(vecFLB,fLB,vecFUB,fUB,vecINS,fIN,vecTmp,vecOne,vecRes) {\
2. vecFLB = _mm_load_ps(fLB);\
3. vecFUB = _mm_load_ps(fUB);\
4. vecINS = _mm_load_ps(fIN);\
5. \
6. vecRes = (__m128i)_mm_cmpgt_ps(vecFUB,vecFLB);\
7. vecTmp = _mm_or_si128(\
8. (__m128i)_mm_cmpgt_ps(vecFLB,vecINS),\
9. (__m128i)_mm_cmpgt_ps(vecINS,vecFUB)\

10. );\
11. vecRes = _mm_andnot_si128(_mm_and_si128(vecRes,vecTmp),vecOne);\
12. }
13.
14. void match_rule_set ( RuleSet * rs, InstanceSet is, int iDim, int iRows ) {
15. int i,j,k,iCnt,iClsIdx,iGround,iPred;
16. register int iMatcheable;
17. Instance ins;
18.
19. __m128i vecRes,vecTmp,vecOne;
20. __m128 vecFLB,vecFUB,vecINS;
21.
22. vecOne = (__m128i){-1,-1};
23.
24. iClsIdx = rs->iCorrectedDim;
25. clean_fitness_rules_set(rs);
26. for ( i=0 ; i<iRows ; i++ ) {
27. // Classify the instance
28. ins = is[i];
29. iPred=-1;
30. for ( j=0 ; iPred==-1 && j<rs->iLen ; j++ ) {
31. iMatcheable = 1;
32. for ( iCnt=0,k=j*(rs->iCorrectedDim+VBSIF) ;
33. iMatcheable && k<j*(rs->iCorrectedDim+VBSIF)+rs->iDim ;
34. k+=VBSIF,iCnt+=VBSIF ) {
35. VEC_MATCH(vecFLB,&(rs->pfLB[k]),
36. vecFUB,&(rs->pfUB[k]),
37. vecINS,&(ins[iCnt]),vecTmp,vecOne,vecRes);
38. iMatcheable = 0xFFFF==_mm_movemask_epi8(vecRes);
39. }
40. if ( iMatcheable )
41. iPred = rs->pfLB[j*(rs->iCorrectedDim+VBSIF)+rs->iCorrectedDim];
42. iPred = (iPred==-1)?rs->iClasses:iPred;
43. iGround=(int)ins[iClsIdx];
44. rs->pConfMat[iGround][iPred]++;
45. }
46. }

Fig. 5 This figure presents a vectorized implementation of the rule matching process presented in Fig. 4.
Lines 1 12 implement the parallelized test against four attributes using vector instructions. The code is
written using C intrinsics for SSE2 compatible architectures. This code runs on P4 or newer Intel processors
and Opteron or Athlon 64 AMD processors
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Parallelization may not help much if we need to send large rule sets across the commu

nication network. For such reasons, GBML techniques work very well on moderate

complexity problems (Bernadó et al. 2001; Bacardit and Butz 2006). However, they need

to be modified to deal with complex and large data set, and also avoid the boundaries

imposed by the issues mentioned above.

4.3 NAX: Incremental rule learning for very large data sets

An incremental rule learning approach may alleviate memory footprint requirements by

evolving only one rule at a time, hence, reducing the memory requirements. However, one

rule by itself cannot solve complex problems. For such a reason, each evolved rule is added

to the final rule set, and the covered examples are removed from the current training set.

The process is repeated until no instances are left in the training set. This approach already

introduced by Cordón et al. (2001) and later also used by Bacardit and Krasnogor (2006)

allows maintaining relatively small memory footprints, making feasible processing large

data sets as the prostate tissue classification data set. However, an incremental approach

to the construction of the rule set requires paying special attention to the way rules are

evolved. For each run of the genetic algorithm used to evolve a rule, we would like to

obtain a maximally general and maximally accurate rule, that is, a rule that covers the

maximum number of example without making mistakes (Wilson 1995).

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor 0

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor 1

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor p

Fig. 6 This figure illustrates the parallel model implemented. Each processor is running the same identical
NAX algorithm. They only differ in the portion of the population being evaluated. The population is treated as
collection of chunks where each processor evaluates its own assigned chunks sharing the fitness of these
individuals with the rest of the processors. This approach minimizes the communication cost
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Llorà et al. (2007) have shown that evolving such rules is possible. In order to promote

maximally general and maximally accurate rules à la XCS (Wilson 1995), we compute the

accuracy (a) and the error (e) of a rule (Llorà et al. 2005). The accuracy is the proportion

of overall examples correctly classified, and the error is the proportion of incorrect clas

sifications issued. For simplicity reasons, we use the proportion of correctly issues

classifications instead, simplifying the final fitness calculation. Let nt+ be the number of

positive examples correctly classified, nt- the number of negative examples correctly

classified, nm the number of times a rule has been matched, and nt the number of examples

available. Using these values, the accuracy and error of a rule r can be computed as:

aðrÞ ¼ ntþðrÞ þ nt ðrÞ
nt

ð3Þ

eðrÞ ¼ ntþðrÞ
nmðrÞ

ð4Þ

Once the accuracy and error of a rule are known, the fitness can be computed as

follows.

1. void evaluate_population ( Population * pp, InstanceSet is, int iDim, int iRows )
2. {
3. int i;
4.
5. /* Compute the fragments of this processor */
6. int iFrag = pp->iLen/FCS_processes;
7. int iInit = FCS_process_id*iFrag;
8. int iLast = (FCS_process_id+1==FCS_processes)?
9. pp->iLen:
10. (FCS_process_id+1)*iFrag;
11. int iCnt = 0;
12. int j,k,l;
13.
14. /* Create the bucket for the broadcast */
15. float faFit[2*iFrag];
16. float faTmp[2*iFrag];
17.
18. /* Evaluate the given chunk assigned to the processor */
19. for ( i=iInit,iCnt=0 ; i<iLast ; i++,iCnt++ ) {
20. match_rule_set(pp->prs[i],is,iDim,iRows );
21. compute_raw_accuracy_fitness_rule_set(pp->prs[i]);
22. faFit[iCnt] = pp->prs[i]->fFitness;
23. }
24.
25. /* Broadcast each of the chunks */
26. for ( i=0 ; i<FCS_processes ; i++ ) {
27. MPI_Bcast((i==FCS_process_id)?faFit:faTmp,iCnt,MPI_FLOAT,i,MPI_COMM_WORLD);
28. if ( i!=FCS_process_id )
29. for ( l=0,j=i*iFrag, k=(i+1)*iFrag ; j<k ; j++,l++ )
30. pp->prs[j]->fFitness = faTmp[l];
31. }
32. }

Fig. 7 This figure presents an implementation of the proposed parallel evaluation scheme using C and MPI:
The piece of code presented below is the only one modified to provide such parallelization capabilities.
Each processor computes which individuals are assigned to it (lines 6 10), then it computes the fitness (lines
10 23), and then it just broadcast the computed fitness (lines 26 31)
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f ðrÞ ¼ aðrÞ � eðrÞc ð5Þ

where c is the error penalization coefficient. The above fitness measure favors rules with a

good classification accuracy and a low error, or maximally general and maximally accurate

rules. By increasing c, we can bias the search towards correct rules. This is an important

element because assembling a rule set based on accurate rules guarantees the overall

performance of the assembled rule set. In our experiments, we have set c to 18 to strongly

bias the search toward maximally general and maximally accurate rules.

NAX ’s efficient implementation of the evolutionary process is based on the techniques

described using hardware acceleration Sect. 4.1.1 and coarse grain parallelism

Sect. 4.1.2. The genetic algorithm used was a modified version of the simple genetic
algorithm (Goldberg 1989) using tournament selection (s = 4), one point crossover, and

mutation based on generating new random boundary elements.

5 Experiments

This section present the results achieved using NAX: To allow the reader to compare with

other techniques, we compare the results obtained using NAX on small data sets provided by

the UCI repository (Merz and Murphy 1998) to other well known supervised learning

algorithms. Finally, we present the first results on the prostate tissue prediction obtained

using NAX. Results focus on the viability of the NAX approach.

5.1 Some UCI repository data sets

The UCI repository (Merz and Murphy 1998) provides several data sets for different

machine learning problems. These data sets have been widely used to test traditional

machine learning and GBML techniques. Table 1 list the data sets used. Due to the nature

of the prostate tissue type classification, we only chose data sets with numeric attributes.

Three of these data sets are of relevant interest: (1) son, by far the one with larger

dimensionality, (2) gls, the one with large number of classes, (3) tao, proposed by Llorà

and Garrell (2001), having complex and non linear boundaries.

Table 1 Summary of the data sets used in the experiments

ID Data set Size Missing
values(%)

Numeric
attributes

Nominal
attributes

Classes

bre Wisconsin Breast Cancer 699 0.3 9 2

bpa Bupa Liver Disorders 345 0.0 6 2

gls Glass 214 0.0 9 6

h s Heart Stats Log 270 0.0 13 2

ion Ionosphere 351 0.0 34 2

irs Iris 150 0.0 4 3

son Sonar 208 0.0 60 2

tao Tao 1888 0.0 2 2

win Wine 178 0.0 13 3

114 X. Llorà et al.
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We could have chosen complex algorithms as baselines for NAX . However, we would

not be able to use them to repeat the experimentation on the prostate tissue classification

domain. The algorithms used in the comparison presented in Table 2 were 0 R (Holte

1993) (a simple base line based on majority class classification) and C4.5 (Quinlan 1993).

Results show percentage of correct classifications and standard deviation from stratified

ten fold cross validation runs. Paired t test comparisons showed no statistically significant

differences between the pruned tree produced by C4.5 and NAX results. This experiments

also helped validate the distributed implementation proposed by NAX: Further results on

empirical comparisons can be found elsewhere (Bernadó et al. 2001; Bacardit and Butz

2006).

5.2 Prostate tissue classification

With the previous results at hand, we ran NAX against the prostate tissue classification data

set. The original data set is defined by 93 attributes. In this paper, however, we used the

reduced version of this data set proposed by (Fernandez et al. 2005) which contains 20

selected attributes out of the 93 available. The dataset is form by 171,314 records. Our goal

was to explore how well NAX could generalize over unseen tissue this is the first step to be

able to address the cancer prediction problem. The other reason that motivated such

experimentation was to achieve similar accuracy results as the ones published earlier by

Fernandez et al. (2005) using a modified Bayes technique. If NAX could perform at the

same level, we will also obtain a set of rules of interest to the spectroscopist. The inter

pretation of the rules will provide insight on how to interpret the models provided by

NAX which could not be done with the models early used by Fernandez et al. (2005).

We conducted stratified 10 fold cross validation experiments to measure the general

ization capabilities of NAX for this problem. Since the problem was rather small larger

data set are being prepared to be run at the supercomputing facilities provided by the

National Center for Supercomputing Applications we run the ten fold cross validation

runs in a 3GHz dual core Pentium D computer with 4 GB of RAM. NAX took advantage of

the hardware support to speedup the matching process and uses two MPI processes to

parallelize as introduced in Fig. 6 the evaluation of the overall population. Each fold

Table 2 Experimental results: percentage of correct classifications and standard deviation from stratified
ten fold cross validation runs

ID 0 R C4.5 NAX

bre 65.52 ± 1.16 95.42 ± 1.69 96.43 ± 1.72

bpa 57.97 ± 1.23 65.70 ± 3.84 64.07 ± 8.36

gls 35.51 ± 4.49 65.89 ± 10.47 68.02 ± 8.69

h s 55.55 ± 0.00 76.30 ± 5.85 75.56 ± 9.39

ion 64.10 ± 1.19 89.74 ± 5.23 89.19 ± 5.27

irs 33.33 ± 0.00 95.33 ± 3.26 94.67 ± 4.98

son 53.37 ± 3.78 71.15 ± 8.54 73.62 ± 9.72

tao 49.79 ± 0.17 95.07 ± 2.11 97.41 ± 0.92

win 39.89 ± 3.22 93.82 ± 2.85 94.34 ± 6.09

Paired t test comparisons showed no statistically significant differences between C4.5 and NAX results

0 R result are just provided as guiding base line
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took about one hour to complete, with the entire classification lasting less than half a day.

We conducted a simple test of adding a second computer with an identical configuration.

The overall time for cross validation was reduced to half. Rough estimates which will

better measured when larger experiments are conducted on NCSA super computers show

that the sequential portion is around 1:1000 for this small data set. Numbers get better as

data set increases, which demonstrates that we will be able to process very large data sets

and efficiently exploit larger numbers of processors.

We proposed another measure of effectiveness, namely how many records can be

processed per second. Using a single processor with the hardware acceleration mechanisms

built into NAX, and the evolved rule set formed by 1,028 rules, the average throughput was

around 60,000 records per second. For the prostate tissue classification, it took less than

three seconds to classify the entire data set. Once the rule set is learnt, the classification

problem falls again into the category of embarrassingly parallel problems (Grama et al.

2003). Since no communication is needed, the speedup grows linearly with the number of

processors added with the proper rule set replication and data set chunking. Thus, with

the dual core box used we where able to just double the throughput (120,000 records per

second) by chunking the data set and use both processors.

The previous results show the benefits of hardware acceleration and parallelization, but

NAX was also able to achieve very competitive classification accuracy in generalization,

correctly classifying 97.09 ± 0.09 of the records (pixels) during the stratified ten fold

cross validation. Figure 8 presents the regenerated prostate tissue classification image

presented in Fig. 2 using a rule set assembled by NAX: Figure 8a presents the incorrectly

classified pixels. Most of the mistakes by the rule set involve similar tissues with few

training records available. This trend was also shown elsewhere (Fernandez et al. 2005).

C4.5 does not provide any statistically significant improvement (only a marginal, not

statistically significant, 0.7%) and provided large decision trees with more than 5,000

leaves not to mention the lack of scalability when compared to NAX:
The rule set assembled by NAX represents an incremental assembling of maximally

general and maximally accurate rules. Thus, we can compute how the accuracy of such

ensemble improves as new rules are added. Figure 9 presents the overall accuracy as rules

are added. It shows an interesting behavior for classifying prostate tissue. Using only 20

rules out of the 1,028 evolved ones, the overall accuracy is 90%, the incorrectly classified

1.3% pixels, and 8.7% were left unclassified. After inspecting the misclassified pixels most

of them belongs to borders between tissues and mislabeling arises from the image dis

cretization one pixel containing different tissue types. Table 3 presents the initial four

rules that covering 80% of the instances belonging to the two larger tissue types

epithelium and fibrous stroma. Such results are relevant, not only for their accuracy, but

also because of the insight they provide to the spectroscopist about the problem structure.

6 Conclusions and further work

This paper has presented the initial results achieved in predicting prostate tissue type using

GBML techniques. Being able to classify unseen tissue quickly, reliably, and accurately, is

the first step towards the creation of CADx systems that may assist a pathologist diag

nosing prostate cancer. We have proposed two main efficiency enhancement techniques for

GBML exploiting hardware parallelization via vector instructions and coarse grain par

allelism via the usage of MPI libraries which allowed us to approach very large data sets.

These techniques, together with an incremental genetics based rule learning approach to
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assemble rule sets formed by maximally general and maximally accurate rules, have led to

the creation of NAX, a system specialized on dealing with large data sets.

Results have shown accurate classification models for prostate tissue along with good

scalability of the NAX implementation. Results also reveal peculiarities of the underlying

problem structure. With very few rules 20 we were able to correctly classify up to 90%

Fig. 8 The figures presented
above show the regenerated
prostate tissue classification
image presented in Fig. 2. (a)
presents the correctly classified
pixels. (b) presents the
incorrectly classified pixels
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of the tissue. Our current work is focused on analyzing the larger data sets containing all

the available features and different tissue sources to test the parallelization scalability of

NAX on NCSA supercomputers. Once accomplished, the procedure will provide confidence

in creating a CADx system to generate a diagnosis based on the evolved models.
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Bernadó E, Llorà X, Garrell J (2001) Advances in Learning Classifier Systems: 4th international workshop

(IWLCS 2001). Chapter XCS and GALE: a comparative study of two Learning Classifier Systems with
six other learning algorithms on classification tasks. Springer Berlin, Heidelberg, pp 115 132

Bhargava R, Fernandez D, Hewitt S, Levin I (2006) High throughput assessment of cells and tissues:
Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data.
Biochemica et Biophisica Acta 1758(7):830 845
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from low signal-to-noise ratio spectroscopic imaging data 
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Fourier Transform Infrared (FT-IR) spectroscopic imaging using array detectors often provides 
low signal-to-noise ratio (SNR) data. One avenue to improving SNR of acquired data is to use a 
decomposition method to separate high SNR factors from others via a numerical transform e.g. 
Principal component analysis (PCA).  A panel of information-bearing factors could then be 
selected for inverse transformation to yield high quality data. Selection of factors for inverse 
transform is usually accomplished manually. In this paper, we propose an approach that utilizes 
the spatial information in the data set to select factors without human input. An order of 
magnitude reduction in noise is routinely achievable using this approach. The method is 
applied to the problem of automating breast tissue histology, in which accuracy in classification 
of tissue into different cell types is shown to depend on the SNR of data. Using the noise 
reduction procedure, we were able to recover high classification accuracy with ~ 10-fold lower 
SNR data. The results imply that ~100-fold reduction in acquisition time is routinely possible for 
automated tissue classifications by using post-acquisition noise reduction. 
 
Keywords: FT-IR spectroscopy, microspectroscopy, hyperspectral imaging, infrared microscopy, MNF 
transform, noise reduction, factor selection 
 

 
1. INTRODUCTION 
Fourier Transform Infrared (FT-IR) spectroscopic imaging is a powerful technique to record spatially-
resolved chemical information.1 Large data acquisition rates, as is a typical trade-off for most analytical 
modalities, lead to degradation in data quality and a consequent loss in the ability to solve problems. 
Mid-IR sources, interferometers and FPA detectors, further, are such that the overall noise is 
dominated by detector noise. Following conventional trading rules in IR spectroscopy,2 hence, the 
signal is recorded multiple times and added to increase the signal to noise ratio (SNR) of the data. This 
approach required co-adding a large number of FPA snapshots of the same scene and resulted in long 
dwell times of the mirror at every optical retardation in initial FT-IR imaging systems.3 The advantages 
of this frame co-addition process were limited due to the noise characteristics of the detector. Hence, 
an optimal combination of frame co-addition and repeated scanning was proposed.4 The advantages of 
increasing numbers of scan co-additions were further facilitated by the development of asynchronous5 
and synchronous rapid scan imaging.6 Fundamentally, these methods all traded the SNR reduction 
against acquisition time and the trade-off is unavoidable to obtain high SNR data using acquisition-side 
approaches. Another approach may be to improve hardware but is expensive and impractical for most 
users. As a consequence, FT-IR imaging is limited in applications that require fast imaging or analysis 
of large number of samples. For a finite data acquisition time, other schemes to extract low noise 
information are available7 but these methods neglect the image as a whole and result in loss of image 
fidelity. The remaining alternative is to use post-acquisition processing methods. 
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Using computation to enhance instrument performance is becoming an attractive option with the rapid 
development of powerful computers and increased storage capacities. A procedure based on the 
Minimum Noise Fraction (MNF) transform,8 for example, was adopted from the satellite, airborne and 
other imaging communities9 for IR spectroscopic imaging.10,11 Similarly, ideas in data compression and 
with the potential for attendant noise reduction are being proposed by other groups.12,13 In this milieu, a 
general approach to noise reduction is to use an Eigenvalue decomposition of the data using a forward 
transform, for example, a principal components analysis (PCA). After selecting eigenimages with 
sufficient SNR, the selected data are inverse transformed to yield the entire dataset with lower noise 
content. This approach was used14 to examine phase compositions by enhancing contrast between 
different regions. PCA reorders data in decreasing order of variance. Similarly, techniques can be used 
to order eigen images in decreasing order of SNR, which is the aforementioned MNF transform. A 
modified version15 of this transform was shown to improve image fidelity and achieve better noise 
reduction than PCA, for example.  
 
Mathematical transform techniques for noise reduction generally utilize the property that noise is 
uncorrelated whereas spectra (signals) have a higher degree of correlation. In the transform domain, 
the signal becomes largely confined to a few eigenvalues whereas the noise is spread across all. Noise 
reduction can be achieved by retaining eigenvalue images that corresponding to high signal content 
and computing the inverse transform. To generalize, the images of eigenvalues may be called factors. 
It is the relative proportion of the signal and noise which forms a criterion for inclusion of specific factors 
in the inverse transform. Inclusion of too many factors will not allow for significant noise rejection, while 
inclusion of too few would result in loss of fine spectral features.  Hence, identifying eigenvalues 
corresponding to high signal content is an important step in the noise reduction process. There are 
many dimension reduction and noise reduction schemes proposed16,17 Most methods16,18,19 choose all 
factors before a certain cut off (k) determined based on predefined criteria, thereby placing the ordering 
burden on the factoring algorithm. However, the assumption that all of the first k factors are important is 
questionable. The MNF approach was specifically developed to overcome the observation that the first 
k factors in PCA were not always optimal. Other methods17,20 can be computationally expensive or do 
not utilize some of the features of the data. 
 
Another general criticism of present methods is that they do not explicitly account for the correlated 
spatial and spectral information in the data. For example, spatial PCA separates features in the spatial 
domain by accounting for variance in the scene whereas spectral-based PCA may consider a column of 
spectra without regard to their spatial correlation. The variance in data may arise from the 
measurement noise, sensor characteristics or may be an artifact. For example, the MNF approach can 
be shown to rigorously order images in decreasing order of random noise. Implicitly, the signal in the 
re-ordering of MNF factors is assumed to arise from features in the image but could come from factors 
other than the sample of interest. We present such a case in Figure 1, which shows the 4th, 8th, 12th and 
19th MNF factors for FT-IR data from a breast tissue sample. The 4th MNF factor shows interesting 
tissue structural features. Although the  8th  factor has higher SNR compared to the  12th  or  19th  factor, 
the  12th  and  19th  factors seemingly contain more features of interest. We would include the 12th and 
19th factors but not the 8th in a noise reduction scheme. The 8th factor likely arises from illumination or 
water vapor differences and not from the sample itself. A generalization of the MNF transform has been 
proposed.21 However, we did not observe the kind of distortion described in ref. 21 in our data and 
therefore did not find the need to use the generalized MNF. 
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Figure 1. (A) 4th MNF Factor (Tissue features are apparent) (B) 8th MNF 
factor (C) 12th MNF factor (D) 19th MNF factor. The 8th factor has less 
apparent structural features than others and is dominated by measurement 
artifacts. 

 
Given the lack of a generally successful automated approach, the identification of factors to include is 
invariably a manual process and is the key impediment to routine application of noise rejection methods 
via factor analysis. First, the manual selection will vary from practitioner to practitioner, leading to 
potential variance in scientific conclusions or confidence in results. Second, the need to examine every 
eigenvalue image (or, at least, a large set of images) is time-consuming. The decision to exclude or 
include images with questionable content is especially difficult and requires significant time as some 
quantitative guidance is often used. For example, comparisons of values from known sample and 
sample-less regions may be used to guide the manual selection approach. These two factors are key 
barriers in the use of post-processing techniques for enhancing IR imaging data.  
 
In this manuscript, we propose a method to automatically determine factors to use in an inverse 
transform for effective noise rejection. The proposed algorithm selects eigenvalue images based on 
structural features in a quantitative manner by utilizing both the correlation between spectra as well as 
the spatial information in the image. We then note that the accuracy of histologic segmentation in 
breast tissue is decreased as the SNR of data decreases beyond a threshold. Hence, we utilize the 
automated noise rejection algorithm to recover data quality from low SNR data such that accuracy of 
tissue recognition is maintained. Last, the improvements in SNR are quantified and discussed in terms 
of potential data acquisition strategies. 

 
 
 

2. METHODS 
 
2.1. Mathematical Background to the Proposed Method 
 
The MNF transform was introduced by Green et. al.8 to order multispectral data in terms of image 
quality and we briefly describe the background to our approach next. Consider a three-dimensional (3-
D) dataset 𝑋𝑋𝑘𝑘�𝑡𝑡� where t

 =(i, j) represents spatial data coordinates and k denotes the spectral element 
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number. Let the total number of spectral elements in the data be M. Let us assume that 𝑋𝑋�𝑡𝑡� =
�𝑋𝑋0�𝑡𝑡�,𝑋𝑋1�𝑡𝑡�,𝑋𝑋2�𝑡𝑡�… … …𝑋𝑋𝑀𝑀−1�𝑡𝑡��

𝑇𝑇can then be written in the form 
 

𝑋𝑋�𝑡𝑡� = 𝑆𝑆�𝑡𝑡� + 𝑁𝑁�𝑡𝑡� (1) 

Where 𝑆𝑆�𝑡𝑡� is the signal and 𝑁𝑁�𝑡𝑡� is additive noise, which are assumed to be uncorrelated. 
Consequently, the covariances of X, S and N are related through 
 
Cov(X) = Cov(S) + Cov(N)  
ΣX = ΣS + ΣN (2) 

Σ denotes covariance and specifically ΣS  and ΣN denote covariance of the signal and noise matrices 
respectively. The noise fraction for the k h spectral element is defined as  

 
Fk = Var(Nk)/Var(Xk)  (3) 

which is the ratio of noise variance to the total variance of that band. The MNF transform is a linear 
combination of bands 

𝑌𝑌𝑘𝑘�𝑡𝑡� = � 𝛼𝛼𝑚𝑚𝑘𝑘
𝑀𝑀

𝑚𝑚=0

𝑋𝑋𝑚𝑚�𝑡𝑡� 

 (4) 

such that the noise fraction Fk is minimum for 𝑌𝑌𝑘𝑘�𝑡𝑡� among all linear transformations orthogonal to 𝑌𝑌𝑗𝑗 �𝑡𝑡�, 
j=0, 1, …k. The vectors 𝛼𝛼𝑘𝑘 = �𝛼𝛼0

𝑘𝑘 ,𝛼𝛼1
𝑘𝑘 ,𝛼𝛼2

𝑘𝑘 … … … .𝛼𝛼𝑀𝑀−1
𝑘𝑘 �𝑇𝑇are the left hand eigen vectors of ΣN Σ-1

X and 
also that the eigen value corresponding to kα is equal to the noise fraction of Yk, i.e. 
 
λk = Fk  (5) 

The definition of MNF would imply that λ0 ≤ λ1 ≤… ≤ λM-1. Since λk corresponds to the noise fraction, 
MNF orders bands in terms of increasing Fk or equivalently, in terms of decreasing SNR. The same set 
of eigen vectors is obtained from maximizing SNR or the noise fraction. However, the approach that 
maximizes SNR would result in higher eigen values corresponding to higher SNR and the MNF 
transform would result in decreasing order of SNR corresponds to decreasing order of eigen values λ0 ≥ 
λ1 ≥… ≥ λM-1. Our implementation uses this approach to compute MNF transforms. It is useful to note 
that since the MNF transform depends on signal to noise ratio it is invariant under scale changes to any 
band (unlike principal components). It is also useful to note that MNF orthogonailzes 𝑆𝑆�𝑡𝑡�, 𝑁𝑁�𝑡𝑡� and 
𝑋𝑋�𝑡𝑡�. 
 
 
2.2. Proposed Algorithm based on MNF-transform for Noise Reduction 
The MNF transform is computed to obtain factor images corresponding to decreasing SNR values, 
following the method above. In heterogeneous materials and tissue, we note that the factor images also 
have structure corresponding to the true structure of the material. The contrast and precise values of 
signal may not correlate with the spectral image but images having distinct spatial domains will have 
edges that capture the structural features; this property forms the basis of our factor selection scheme. 
These features in breast tissue, for example, include boundaries of the sample, ducts and transitions 
between different structural units. Several methods for edge detection22 based on different filters and 
different thresholding schemes have been proposed and studied. Three well known edge detection 
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techniques (Sobel, Roberts, and Canny) were used and Canny's method23 was found to be the most 
effective one for our application. The result of edge detection is a binary image that is termed an 'edge 
map'. A typical edge map is shown in figure 2. It must be noted that the presence of impulsive noise 
hinders edge detection. A median filter may be used to mitigate the effect of such impulsive noise. The 
choice of size of the median filter is a compromise between the size of structural features in the image 
and the size of noise clusters that need to be removed. Using a large median filter would be effective in 
removing large clusters of noise but could also result in loss of features, especially those that are 
smaller than the size of the median filter. Median filters of sizes between 7x7 and 13x13 were found to 
be most effective for the samples considered here. The edge map in Figure 2, for example, has been 
obtained after median filtering with a size 9x9 filter. 
 
  

 
 

Figure 2. Left: Typical 'ideal' image (I) Right: corresponding edge map (EI) 

 
 
The next step in factor selection is to choose an 'ideal', high SNR image (I) that has all the structural 
features of interest. The edge map of I and edge maps of factors images are compared to decide 
whether or not a factor is significant. Since the first MNF factor corresponds to the highest SNR, it could 
be used as our 'ideal' image I. It may also be possible to choose a better image than the first factor in 
terms of structure if we have some prior knowledge about the sample, for example, information about 
its spectral characteristics. For many biological tissues, the wavenumber region between ~ 950 cm-1 
(lower FPA cut-off) to ~1800 cm-1 (fingerprint region) and from ~2765 cm-1 to ~3750 cm-1 (stretching 
region) is known to have chemical significance. The ideal image I could be computed by first calculating 
the second derivative of spectra in these ranges using a Savitzky-Golay algorithm.24 The sum of the 
absolute values of the second derivative data is then indicative of the overall chemical composition of 
the tissue without regard to scattering artifacts.25 In general, the fingerprint region of the IR spectrum is 
likely universally applicable for this procedure. The Savitzky-Golay filter reduces noise while preserving 
peak heights and widths, and the summation helps improve overall SNR by averaging noise. This gives 
us a high SNR I (figure 2) that captures features from important spectral bands. Yet another alternative 
is to calculate the Gram-Schmidt intensity of the interferogram of the sample,26 which could be a faster 
route by precluding the FT-process. The image, however, would retain both structural and biochemical 
contributions from all functional groups and scattering interfaces. Yet another approach could be to use 
the bright field optical microscopy image. The optical image, however, may not contain sufficient 
contrast, have differences observed in the IR image or may experience a mismatch in resolution. Last, 
the IR “bright field” equivalent, which is simply the height of the centerburst may be used. Since a 
background is collected for absorbance data, the sample data set can be easily corrected for 
illumination differences. This approach can be considered a combination of both IR and visible imaging. 
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Figure 3. Typical error plot before sorting RMSE 

Having chosen an 'ideal' image I, its edge map EI is computed. Next, each MNF factor image is filtered 
using the same kernel as that used for the edge map and edge maps Ej, j=0,1, …,M-1 are found. In 
practice, the number of significant MNF factors for our data was much smaller (<60) than the number of 
spectral bands (~1640) and it would be prudent to consider a smaller subset to save computation time.  
Next, the root mean square error (RMSE) between EI and Ej, j=0,…,M-1 is computed. A typical plot of 
RMSE vs factor number is shown in Figure 3. RMSE here is an estimate of the spatial similarity of Ei to I. 
The plot reveals that factors corresponding to higher eigen values may not necessarily have more 
significant features.  

 
Figure 4. RMSE plot after reordering MNF factors for decreasing spatial 

similarity to the lowest noise edge map. 

A typical RMSE plot after sorting is shown in Figure 4 and can be understood in conjunction with the 
spatial features in Figure 5. MNF factors and their corresponding edge maps in Figure 5 demonstrate that 
images with significant features (e.g. Factor 1, 2, 6 and 18) have well defined edge maps while those 
without significant features (e.g. Factor 44) have nondescript edge maps. The spatial similarity of early 
factors with the reference edge map results in lower RMSE values that increase with increasing noise. 
The consistent difference between the reference edge map and edge maps corresponding to noise 
results in the plateau region of the RMSE curve. Therefore, a good cut-off point for factor selection 
would be a point on the curve just before the onset of the plateau. Factors close to the chosen cut off in 
Figure 4 (e.g. Factor 37) have edge maps with a semblance of feature edges buried in noise. By 
choosing all factors corresponding to RMSE values less than that at the cut-off point, we select only 
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those factors with significant features. The derivative of the curve in the plateau region is zero and this 
could be utilized in finding the cut-off point. To mitigate the effect of local variation, a moving average 
filter may be used to smooth the curve prior to calculating its derivative. The cut-off in our case is 
chosen to be the point after which the derivative does not rise more than µ+3σ where µ and σ 
correspond to the mean and standard deviation of the derivative of flat region of the curve. This is a 
very strict condition which maintains a high degree of spectral detail. Computing the MNF transform, 
selecting factors based on edge maps and computing the inverse MNF using these factors gives a 
complete automated noise reduction algorithm that does not require human input. There are choices 
that can be made while setting up the protocol, for example, in choice of the reference image, that are 
under operator control. Once the protocol is finalized, however, the process is entirely automated and 
can be high throughput. Thus, the criteria of both objectivity and automation for noise reduction are 
addressed. 
 

 
 

Figure 5. Typical MNF factor images and corresponding edge maps 

 
 

3. EXPERIMENTAL 
Tissue used for this study was obtained from a commercial source (Biomax Inc.) and processed as per 
procedures reported earlier.27 Data is acquired at 6.25µm pixel size and a 4 cm-1 spectral resolution 
using the Perkin-Elmer Spotlight 400 imaging spectrometer. A background single beam reference is 
collected by averaging 120 scans. Sample data sets are acquired by averaging two interferometer 
scans. An undersampling ratio of two, zero-filling factor of two and N-B medium apodization are 
employed. To generally validate the method for different instruments, we implemented the same 
algorithm on data acquired from a system equipped with a larger two-dimensional array detector 
(Varian Stingray). The system consists of a Varian 7000 Spectrometer coupled to a microscope 
accessory, UMA-400.The imaging detector is a liquid nitrogen cooled Santa Barbara focal plane FPA of 
32 x 32 mercury cadmium telluride (MCT) elements imaging an average spatial area of 175µm x 
175µm. The data were acquired in rapid scan mode with an undersampling ratio of 2 at a spectral 
resolution of 4 cm-1 and processed using a factor of two zero-filling and NB-medium apodization. For 
these data, the number of co-additions was varied (1, 2, 4, 8, 16, 32 and 64 scans) to obtain a range of 
poor to good SNR data. The background reference was collected at 120 co-additions. 
 
All software used was written in-house or utilized programs in ENVI/IDL. Computing MNF transforms 
involves estimating noise statistics. ENVI can use a shift difference method to compute noise statistics, 
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which assumes that every pixel contains both signal and noise, and that adjacent pixels contain the 
same signal but different noise. A shift difference is performed on the data by differencing adjacent 
pixel above and to the right of each pixel and averaging the results to obtain the 'noise' value to assign 
to the pixel being processed. To the extent that this assumption is not true, the noise statistics estimate 
is in error. Rigorously, the noise should be estimated using repeat measurements, as that is easily 
possible in FT-IR imaging. With the commercial raster scanning system, however, we were unable to 
obtain successive measurements without a new scan. The positioning error on the stage was such that 
slight pixel shifting was observed, hence, precluding true averaging at every pixel. Hence, we 
considered the shift difference method. The pixel size being set smaller than the lowest resolution 
achievable, however, and the general nature of large phases in the data here likely result in the 
estimate being close. 
 
 
4. RESULTS AND DISCUSSION 

 
Figure 6 (A) Acquired high SNR data and simulated noisy spectra (σ = 0.001, 0.01, 0.1 and 
0.4 a.u.), showing the degradation in data quality Spectra are offset for clarity. (B)  Spectra 
after noise reduction. (C) Absorption spectrum (1-scan) compared to the resulting 
spectrum from the same pixel after noise reduction. (D) Comparison of 1 scan (noise-
reduced) to 64 scans (as-acquired).  

 
4.1. Noise reduction and quantitative benefits 
In order to quantify the SNR gain from noise reduction, we first acquired high SNR data using the linear 
array system as a base for simulations and a comparator. Poor SNR data is simulated from this data by 
adding noise from a normal distribution with different standard deviations (σN = 0.001, 0.01, 0.1 and 0.4 
a.u.) as shown for a single pixel in Figure 6(A). Resulting spectra after noise reduction are shown in Figure 
6(B). An improvement is apparent, even in cases where noise appears overwhelming. The reduction in 
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noise achieved is quantified in Figure 7. Noise values were calculated using the non-absorbing 1950 cm-1 
- 2000cm-1 region with 41 spectral points around 1975cm-1 and are averages of 1024 spectra.  

 
Figure 7 Noise before (input noise) and after application of the algorithm 
(output noise). An order of magnitude improvement can be observed. 

 
The dashed diagonal is the unity gain line that separates decrease or increase in noise upon 
application of the algorithm. The plot indicates success in applicability over three orders of magnitude of 
input noise where an order of magnitude noise reduction is observed. The actual noise reduction 
depends on the number of factors chosen for the inverse transform, the number of pixels in the original 
data set and the degree of correlation in the noise. If the noise is high enough, the benefit is observed 
to be proportional to the input noise. For very low noise cases, the plot indicates that it becomes difficult 
to improve the data further. This behavior likely arises from the distribution of noise and information in 
factors. It must be noted that many of the factors rejected in the inverse transform do contain 
information and all factors selected do contain noise that is both correlated and uncorrelated. Hence, 
the limitation of the process arises from both correlated noise and the need to balance information 
content of factor images with the opportunity to reduce noise, We have used a fairly conservative 
approach to noise reduction in that fewer factors could have been selected, which may also explain the 
lack of significant improvements when the input noise is low. It is interesting to note that a previous 
application of the MNF transform10 also provided a limit to the improvement possible with this approach, 
but in that of the high noise limit. There, the high input noise data were found to contain a low frequency 
response in the spectra of inverse transformed data that limited the noise reduction achieved. In 
summary, the forward-reverse transform approach appears to be bounded in its ability to improve data 
quality in both the high noise and low noise cases. These limits must be considered when designing 
data acquisition protocols that take advantage of this post-processing approach. 
 
4.2. Impact 
4.2.1. Data acquisition time 
From the trading rules of FT-IR spectroscopy28, a factor of n improvement in SNR requires an increase 
of n2 in data acquisition time. Hence, a method to increase data acquisition rate without loss in its 
quality could involve rapid data collection at a low SNR followed by application of numerical techniques 
for noise reduction. The order of magnitude improvement, as we show above, allows for close to two 
orders of magnitude reduction in scanning time. To test this hypothesis, we compared noise reduced 
data from a single interferometer scan with data obtained by averaging 64 scans (Figure 6(D)). Spectra 
with only one scan, after noise reduction, closely resemble spectra obtained from 64 scans 
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experimentally. Caution must be exercised, however, in claiming that mathematical techniques provide 
precisely equivalent data. As can be seen from the spectra, there are some low frequency noise 
components in the noise–reduced spectrum that were not eliminated.29  
 
Automated noise reduction has important implications in areas where data quality cannot be improved 
by averaging (e.g. kinetics measurements),30 for low-throughput configurations such as total internal 
reflection sampling,31,32,33 where large quantities of data are acquired or where the analyate signal is 
low. An interesting test case in to perform histopathology without human intervention34 faster than with 
current data acquisition protocols. Briefly, FT-IR microspectroscopy combined with pattern recognition 
tools35 is rapidly developing as a potential tool for automated structure36 and disease recognition37,38,39 
within complex tissue by a number of groups.40,41 Unfortunately, the time to acquire data from large 
numbers of samples is prohibitive. For example, a recent study27 reported the quantitative evaluation of 
classification using large sample and data sets that required many months to acquire. Reducing data 
acquisition time through automated noise reduction will help reduce time in laboratory studies. When 
the approach is translated to clinical venues, it will serve to enhance the speeds and throughput of 
samples. As an example, Figure 8 illustrates the benefits of using automated noise reduction. Prostate 
tissue is classified into its constituent cell types. Classification is inaccurate for the higher noise case 
but is recovered when the noise is reduced. The time for data acquisition for this 500 µm x 500 µm 
image set was reduced from ~ 45 mins to less than 2 mins. While the result demonstrates qualitative 
agreement between the classified images, we examine next a detailed quantitative assessment of the 
fidelity of inverse transformed data and the benefits of noise rejection for tissue classification.  
 

 
Figure 8. Effect of automated noise reduction on data collection time. Top 
row: classification results, Bottom row: raw absorbance differences in 
tissue at 1080 cm-1 (A) high SNR data,  Noise ~ 0.001a.u. (B) lower SNR 
data, Noise ~ 0.005a.u. (C) low SNR with noise reduction.  

 
4.2.2. Tissue classification accuracy 
Tissue classification accuracy is related to SNR of the data as can be seen in classified images shown 
in Figure 9. Noise in classified images increases progressively until all ability to segment tissue is lost for 
noise levels ~0.1 a.u. We quantified classification accuracy, further as measured by calculating the 
area under the curve (AUC) of the receiver operating curve(ROC)42 for pixels that meet the threshold 
for classification, in Figure 9 (E). AUC values finally fall to about 0.5, which is equivalent to random 
guessing and does not provide any useful classification information.  There is a significant decrease in 
classification accuracy when the noise is greater than 0.1 a.u. in which case some tissue pixels are not 
even recognized as meeting the threshold for inclusion.  

Fibrous StromaMixed StromaEpithelium

A B C

Fibrous StromaMixed StromaEpithelium

A B C
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Figure 9. Effect of noise on FT-IR image classification is illustrated for 
breast tissue in A-D (top panel), where the noise in the data is calculated to 
be 0.0001, 0.001, 0.001 and 0.1 a.u., respectively. (E) Classification 
accuracy, as measured by the area under the receiver operating 
characteristic curve, decreases with increasing noise.  Image classification 
improvement is shown upon using the noise reduction algorithm (A-D, 
bottom panel). Classified images correspond to noise reduced (A) raw data, 
(B) 0.001 noise (C) 0.01 noise (D) 0.1 noise (E) Comparing classification 
before and after noise reduction. 

The impact of noise reduction on classification is demonstrated in the bottom panel of Figure 9. 
Classified images are displayed for each noise-reduced case (A-D) and the classification accuracy 
values for the noise reduced images are compared with the classification accuracy values for original 
images (F). Examination of classified images and classification accuracy values indicates that noise 
reduction scheme improves classifier performance in each case. For as-acquired data and data with 
noise ~0.001a.u. added, noise reduction does not appear to significantly impact classification since the 
classification accuracy is almost 100%. On the other hand, noise reduction significantly improves 
classification from FT-IR spectroscopic imaging data with higher noise levels. Hence, a potential route 
to faster data acquisition for histopathology, without the need to modify hardware or change any 
experimental configuration, can be proposed based on post-processing noise reduction. The ten-fold 
increase in noise of the data to provide the same classification accuracy implies that ~100-fold 
decrease in data acquisition time may be obtained. Instead of needing ~300 hrs (12 days) to scan a 1 
cm x 1 cm area with a large focal plane detector, the proposed approach will allow the same in ~3 
hours.     
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5. CONCLUSIONS 
A factor selection scheme based on objective structural features has been proposed here for 
automated noise reduction after data acquisition. An order of magnitude reduction in noise could be 
achieved using this algorithm when the noise was not very low. Applied to obtaining results from 
sample, for example for tissue classification, there is an equivalent recovery of correct results at higher 
noise levels. The improvement translates directly into a reduction in time required for data collection. It 
must be noted that the gain here is through post-acquisition computational techniques and does not 
involve changes in instrumentation hardware or data acquisition schemes. Hence, it is easy to 
implement and inexpensive to deploy. It is anticipated that the automated nature of the proposed 
approach will allow it to become routinely applied to enhance data quality and the recover scientific 
results with lower effort. 
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ABSTRACT 

Histologic information is often the ground truth against which imaging technology performance is measured. Typically, 
this information is limited, however, due to the need to excise tissue, stain it and have the tissue section manually 
reviewed. As a consequence, histologic models of actual tissues are difficult to acquire and are generally prohibitively 
expensive. Models and phantoms for imaging development, hence, have to be simple and reproducible for concordance 
between different groups developing the same imaging methods but may not reflect tissue structure. Here, we propose a 
route to histologic information that does not involve the use of human review nor does it require specialized dyes or 
stains. We combine mid-infrared Fourier transform infrared (FT-IR) spectroscopy with imaging to record data from 
tissue sections. Attendant numerical algorithms are used to convert the data to histologic information. Additionally, the 
biochemical nature of the recorded information can be used to generate contrast for other modalities. We propose that 
this histologic model and spectroscopic generation of contrast can serve as standard for testing and design aid for 
tomography and spectroscopy of tissues. We discuss here the biochemical and statistical issues involved in creating 
histologic models  and demonstrate the use of the approach in generating optical coherence tomography (OCT) images 
of prostate tissue samples. 

Keywords: Spectroscopy, histology, Fourier transform infrared spectroscopic imaging, FT-IR, optical coherence 
tomography, modeling, microscopy, simulation, software phantom, prostate 
 

1. INTRODUCTION 
Histopathology is the gold standard for evaluation of microscopic imaging technologies. In particular, correlative 
information for the evaluation of in-vivo imaging technologies usually consists of a corresponding hematoxylin and 
eosin (H&E) stained image of the excised tissue.  Most often, data from an imaging technology are presented side-by-
side with the corresponding H&E image. In general, the confirmatory correlation sought is a visual cue that replicates 
the contrast of H&E images by the particular contrast of the imaging modality. In some cases, contrast information from 
multiple imaging modalities and dyes can be combined in efforts to reproduce the observed H&E structure. There are 
few reports, however, on using histopathology as a basis for the development of imaging technologies. In particular, the 
use of histologic ground truth can help simulate the forward problem and help understand a modality’s performance 
under different experimental parameters, quality of data obtained and potential distortions that may be encountered. 
Unfortunately, histologic ground truth is not readily available for such use due to the need to stain tissue and the manual 
nature of examinations. 

A new concept has recently emerged in which chemical imaging can be used to measure the intrinsic biochemical 
content of tissue and employ the same for histologic recognition. The method does not require dyes but relies on spectral 
data recording. Instead of relying on a human (pathologist) to make decisions, objective numerical algorithms are 
employed to segment tissue. In one such effort, infrared spectroscopy is used in an imaging format to measure the 
content of tissue. While efforts to describe tissue using IR spectroscopy are nearly 60 years old, advances in both 
instrumentation and computational capability have revolutionized this area of investigation [1]. Studies are now being 
published that involve statistically significant populations of patients (>100), millions of spectral measurements and 
detailed understanding due to new computational algorithms. The instrumentation advances have mostly centered around 
the development of Fourier transform infrared (FT-IR) spectroscopic imaging [1, 2, 3]. 
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FT-IR imaging combines the imaging capabilities of optical microscopy with the chemical selectivity of FT-IR 
spectroscopy. Similar to optical microscopy, FTIR imaging of tissue provides images. At each pixel, additionally, is a 
spectrum that depends uniquely on the sample’s chemical composition. IR absorption spectra are, thus, a unique and 
quantitative “fingerprint” of composition. FTIR spectroscopy is well established for the high-throughput, non-invasive 
and non-destructive recording of molecular vibrational modes [4]. While not as molecularly specific as some techniques 
(e.g. mass spectroscopy), spectra provide holistic measurements rapidly and reproducibly [5]. Correspondingly, contrast 
in FTIR images [6] is generated using algorithms to find differences in tissue chemistry. For example, by selecting 
appropriate spectral parameters, one is able to “dial” a specific chemistry. Instead of recognizing microscopic structural 
patterns, we have recently demonstrated an alternate approach to prostate histopathology by directly measuring tissue 
chemistry [7]. Since both tissue structure and chemical composition are measured, the process is also termed chemical 
imaging.  

A number of laboratory studies have demonstrated carefully biochemical changes indicative of disease [8], determined 
optical [9] and biological confounding factors [10,11] and demonstrated preliminary potential [12]. Until recently, there 
was a general lack of substantially validated protocols to perform automated tissue recognition with FT-IR imaging. The 
primary reason was the slow nature of data acquisition and the trade-off between light intensity and spatial resolution in 
FT-IR microscopy that prevented validations on large (hundreds) of samples. The drawbacks have been addressed by 
new technologies and high-throughput sampling methods. For example, a recent report combined FT-IR imaging with 
combinatorial tissue microarrays (TMA), fast numerical processing and statistical tests [13]. The study developed both 
objective protocols as well as performed substantial validation [14]. Following the study, protocols to classify tissue into 
one of ten cell types without human input and without using any stains are available. The net result is that color-coded 
images of tissue are available that correspond to each cell type. The large population sampling provides an estimate of 
statistical variance that captures heterogeneity in measurements. The TMA results can be translated to larger, radical 
prostatectomy (RP) samples or whole mounts without any protocol modifications but few studies have actually 
demonstrated that result.  

In this manuscript, we propose to utilize the advances in automated histologic classification to provide an image that can 
be used to predict the response of another optical imaging modality. The modality chosen as a demonstrative example is 
optical coherence tomography (OCT) [15,16,17]. In OCT reflections of low-coherence light are detected permitting the 
imaging of tissue microstructure in-situ. Micron-scale resolution images can be obtained without the need for excision 
and histological processing, and the technology has been applied for imaging a wide range of nontransparent tissues 
[18,19,20,21,22,23]. Imaging depths of 1-2 mm, resolutions of less than 2 μm [24,25] and real-time image acquisition 
have all been demonstrated [26] using probes [27,28] and for both animal models and humans [29]. The information 
content of OCT, however, is limited to linear scattering (structure) visualization and will require an expert to interpret 
data and make decisions. While efforts have been made towards extending OCT for molecular imaging of biological 
tissue [30,31,32] the gold standard for comparison has generally been H&E images. To simulate the forward problem, 
the usual approach is to model and validate on spheres suspended in a liquid [33]. Here we show that IR imaging results 
can be employed to generate computationally the likely image that would be obtained by OCT. A limited set of physical 
effects is modeled in this preliminary communication but the major idea of using validated histology to simulate image 
formation in an optical imaging modality is proposed and broadly demonstrated. 

 

2. EXPERIMENTAL 
Spectroscopic imaging data sets were acquired for small sample regions separately by averaging two interferometer 
scans at 4cm-1 spectral resolution, and a moving mirror speed of 2.2cm/s on the Perkin-Elmer Spotlight 400 imaging 
spectrometer with a linear array detector and a raster scanning technique. A NB-medium apodization and undersampling 
ratio of 2 (referenced to a He-Ne laser) are employed in data collection. As the peaks of interest are the fundamental 
vibrational modes and the substrate cutoff is approached around 700 cm-1, the free-scanning spectral range is truncated to 
4000-720 cm-1 for optimal information content and storage. Each pixel in the image recorded was corresponds 6.25μm 
square at the sample. An IR background is collected with 120 scans per pixel at a location on the substrate with no tissue 
present and the ratio of the background to sample intensity is computed. Any remaining vapor artifacts are removed from 
the spectral data using the Perkin-Elmer Spotlight atmospheric correction algorithm. A formalin-fixed, paraffin-
embedded radical prostatectomy sample was obtained from an anonymized donor in the NIH tissue array research 
program. A thin (~5 μm) section of the tissue was microtomed and placed onto a BaF2 disk. The sample was washed in 
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hexane for 24 hours and paraffin was removed. Data were processed following previously described procedures [34]. 
Figure 1 shows the class image obtained after automated tissue segmentation. Figure 2 shows the distribution of protein 
in tissue based on the Amide I vibrational mode, which is roughly indicative of density differences between tissues. 

    

 
Fig. 1. Classified image of a section of prostate tissue in which colors denote specific cell types. Epithelium, fibroblast-rich 

stroma and largely extra-cellular matrix classes are denoted by green, magenta and thistle colors respectively. 

 

 
Fig. 2. Grayscale image demonstrating the relative distribution of the Amide I vibrational mode absorbance within tissue. 

The texture in the image is roughly indicative of the density changes in the structure of the tissue. 

 

3. MODELING 
3.1 Transformations between tissue properties 

While different imaging techniques operate using different contrast mechanisms, e.g., scattering, absorption, 
fluorescence, etc., it is generally assumed that contrast is directly correlated to object structure. Consequently, one can 
reasonably produce mappings between tissue properties using relatively simple, local, mathematical operations. For 
example, each of the tissue types in Fig. 1 can be modeled as having a different refractive index in the near infrared. 
Defining an arbitrary unit of index contrast Δn , and assigning refractive indices 1+ Δn( ) to epithelium, 1+1.6Δn( ) to 
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extra-cellular matrix, and 1+ 2.4Δn( ) to fibroblast-rich stroma, results in the index map seen in Fig. 3. Alternatively, one 
can directly associate the grayscale values in Fig. 2 with the refractive index contrast.  

 

 
Fig. 3. A near-infrared index contrast or scattering potential (Δn) image calculated by assigning a different refractive index 

to each class in Fig. 1. 

3.2 Simple simulation of OCT image formation 

Starting with the maps of scattering potential based on Fig. 2 or as shown in Fig. 3, it is possible to simulate OCT 
imaging. OCT is a coherent imaging technique that uses low-coherence interferometry to resolve sample structure in the 
axial (depth) direction and scanning of the focus to resolve transverse structure. Modern OCT systems often collect data 
in the spectral domain, as spectroscopic data collection offers significant advantages in terms of speed and signal 
strength [35,36]. Mathematically, two-dimensional spectral OCT data, S, can be expressed [37] as 

 ( ) ( ) ( ) ( )dzzxnkzxgkAkxS ,,,, 2∫ Δ= , (1) 

where k is wavenumber (the spectral axis), A is a factor dependent on the spectral profile of the optical source and g is 
the focused field produced by the objective lens. It should be noted that this model employs the first Born 
approximation, i.e., only singly scattered light is considered. Multiply scattered light does not contribute to the usable 
image in OCT and results in image artifacts.  

In the simple model used here, the illumination source is assumed to have a flat emission profile over the collected 
bandpass and a Gaussian beam [38] describes the focused field. An objective numerical aperture of 0.025 is simulated 
and the spectrometer is modeled as collecting 160 data points over a spectral range corresponding to wavelengths 
between 980nm and 1020nm. With these parameters the transverse resolution of the system is approximately 25.5μm 
(calculated from the Gaussian beam waist) and the depth of focus is approximately 1020μm (calculated from the 
Rayleigh range). 

To a first approximation, the relation described in Eq. (1) can be inverted by taking an inverse Fourier transform over the 
k axis. The axial resolution of the system is defined by the bandwidth of the source and for the parameters simulated 
here, this gives a value of approximately 12.5μm. Equation (1) was evaluated for the scattering potentials shown in both 
Fig. 2 and Fig. 3, and OCT images calculated – the image from Fig. 2 is shown in Fig. 4, and the image from Fig. 3 is 
shown in Fig. 5. The difference between the images illustrates the basis of contrast. If simple density changes are 
considered, Fig. 4 provides an image in which the contrast between the classes is limited (cf. Fig. 1). In the case where 
properties of cell types are explicitly considered, the contrast between classes is accurately reflected in the image.  
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Fig. 4. A simulated OCT image calculated from the scattering potential of Fig. 2. The axial dimension is in z and the 

transverse dimension is x. The focus of the objective lens is at the z=0 plane and the probing light is assumed to be 
incident from the bottom of the image. 

 
Fig. 5. A simulated OCT image calculated from the scattering potential of Fig. 3.  

The effects of the limited OCT resolution can be seen in both images. Also visible is the loss signal strength as one 
moves outside of the depth of focus. Standard OCT image reconstruction breaks down outside of the depth of focus, 
resulting in transverse blurring and a rapid decay in signal strength. However, more advanced image reconstruction 
techniques can be applied to eliminate the transverse blurring and lessen the signal decay [33,39] – these methods could 
be applied to the simulated data but are not considered here. 

3.3 Including noise and absorption  

Absorption and multiple scattering limit the depth of imaging achievable in OCT. These effects are not captured in the 
linearized model of Eq. (1), as applying the first Born approximation involves assuming that the illuminating field at a 
point is not appreciably affected by the rest of the sample. An exact accounting of absorption and multiple scattering can 
be difficult, since both effects are non-local, i.e., the absorption of the field to a given point depends on the entire 
propagation path of the incident light, and the strength of the multiply scattered field at a point depends on the scattering 
from all neighboring points. However, as a first approximation, the sample absorption can be modeled with a 
homogeneous absorption coefficient. For a well-collimated beam the incident field will then decay exponentially into the 
sample. The incident field in Eq. (1) is then replaced by 

 g x,z,k( )→ g x,z,k( )exp −αkz( ), (2) 
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where α is the absorption coefficient. This modified forward model was applied to the index map seen in Fig. 3 and the 
corresponding OCT images are displayed in Fig. 6. Three different absorption coefficients were simulated and it can be 
seen that the absorption does indeed limit the depth of imaging in these simulations. 

 

 
Fig. 6. Simulated OCT images calculated with a forward model that includes absorption. Three different absorption 

coefficients are simulated, resulting in three differing penetration depths for the illuminating light. 

Noise can also be a crucial limiting factor in the performance of OCT imaging systems. Fluctuations of the 
interferometer reference beam often dominate the statistics, and so noise can be reasonably modeled as Gaussian and 
spatially independent in the image domain (see Ref. 36 for a more detailed OCT noise model). The effects of noise on 
the image are illustrated in Fig. 7. In this figure the signal to noise ratio (SNR) is defined as 20 log10 P σ( ), where P is 
the peak value of the image and σ is the standard deviation of the Gaussian noise. 

 
Fig. 7. The α=0.2×10-3 image of Fig. 6 corrupted by varying amounts of measurement noise. All of these images are 

displayed on the same scale with some high-noise, high-signal pixels saturating the color map.  

 

4. CONCLUSIONS 
The use of histologic models derived from spectroscopic imaging and automated analysis of clinical samples has been 
proposed in this manuscript. While the technology to extract histologic ground truth is becoming readily available and 
used by many practitioners, the use of such information to model and understand other imaging systems has not been 
demonstrated. A simple set of image formation steps and effects of experimental parameters were implemented in this 
manuscript to simulate OCT images from the corresponding class images and spectral texture. The effects of using both 
approaches, idealized sample absorption and noise can be seen in the generated images. It is anticipated that the 
methodology proposed here will be refined and may prove useful in the modeling, design and evaluation of imaging 
instruments for specific tissue types. 
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